首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
物理学   5篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
排序方式: 共有5条查询结果,搜索用时 62 毫秒
1
1.
在固态阴极射线发光中,过热电子碰撞激发有机材料而发光,因此加速层对电子的加速能力是影响器件发光亮度的关键因素之一.分别以SiO2和ZnO作为加速层.制备出两种固态阴极射线发光器件A:ITO/MEH-PPV/SiO2/Al和B:ITO/MEH-PPV/ZnO/Al.通过理论计算比较了电子从电极注入到加速层的隧穿电流密度以及SiO2层与ZnO层的电场强度,计算结果表明:在相同驱动电压下,SiO2作为电子加速层时隧穿电流的密度要大于ZnO层的隧穿电流的密度,并且SiO2层的电场强度比ZnO层的电场强度大.实验结果表明:SiO2作为加速层的器件的发光强度高于以ZnO为电子加速层器件的发光强度.  相似文献   
2.
采用倾斜式生长的方法,在本底真空为3×10-4 Pa,生长率为0.2 nm·s-1的条件下,通过改变衬底的法线方向与入射粒子流的夹角α,在ITO导电玻璃衬底上制备了ZnS纳米薄膜。在α=80°和85°时,样品的X射线衍射谱证实了不同倾斜角时所制备薄膜中均有纳米ZnS晶体形成,扫描电子显微镜(SEM)图像显示,所形成的薄膜均呈现出了柱状结构,并且倾斜角为85°时所得到的纳米柱直径大于80°时所得结果;在α=0°时,相应测量结果表明,虽然在不同衬底上也形成了纳米ZnS晶体薄膜,但并未见柱状结构,而是形成了一层均匀且致密的薄膜。对两种薄膜结构的生长动力学过程作了分析。ITO衬底上薄膜的透射光谱表明ZnS柱状薄膜能够提高可见光的透过率,因此对柱状ZnS纳米薄膜的研究将有利于提高电致发光器件的发光效率。  相似文献   
3.
制备了MEH-PPV(poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene])和PCBM (1-(3-mehyloxycarbonyl)propy1-phenyl[6,6]C61)共混体系的聚合物太阳能电池。通过改变MEH-PPV∶PCBM(质量比为1∶4)混合溶液的浓度及旋涂时的转速来改变活性层的厚度,研究了器件性能随活性层厚度的变化。当旋涂速率小于4 000 r·min-1时随着厚度的减小,开路电压没有明显的变化,基本在0.8 V左右,但短路电流呈现单调上升的趋势,填充因子略有下降。当旋涂速率大于5 000 r·min-1时,开路电压和短路电流都开始下降。其中,开路电压从5 000 r·min-1时的0.78 V下降到8 000 r·min-1时的0.67 V,短路电流更是从5 000 r·min-1时的3.96 mA·cm-2下降到8 000 r·min-1 时的1.76 mA·cm-2。短路电流受光吸收和载流子传输两方面的共同影响,而活性层厚度的变化使得这两方面的影响产生相悖的效果。活性层越厚,光生激子数越多,但同时内建电场变弱,而且激子解离后得到的载流子传输到相应电极的距离越长,载流子被电极收集的概率减小。开路电压的降低则源于激子在MEH-PPV和PCBM与相应电极界面处解离比重的增加。  相似文献   
4.
孔超  徐征  赵谡玲  张福俊  黄金英  闫光  厉军明 《物理学报》2008,57(12):7891-7895
用Si3N4作为电子加速层制备了固态阴极射线发光器件,其中发光层为聚[2-甲氧基-5-(2-乙基-己氧基)-1,4-苯撑乙烯撑](MEH-PPV).在交流电压的驱动下,实现了MEH-PPV的固态阴极射线发光.与SiO2做电子加速层的器件进行了对比研究,两种器件在交流电场的驱动下都得到了波峰位于417nm的短波长发光峰,它来自有机物中电子从最低未占分子轨道到最高占据分子轨道的直接复合发光,这进一步证明了固态阴极射线理论的正确性.在交流高场下比 关键词: 固态阴极射线发光 3N4')" href="#">Si3N4 电子加速层 电致发光  相似文献   
5.
用Si3N4作为电子加速层制备了固态阴极射线发光器件,其中发光层为聚[2-甲氧基-5-(2-乙基-己氧基)-1,4-苯撑乙烯撑](MEH-PPV).在交流电压的驱动下,实现了MEH-PPV的固态阴极射线发光.与SiO2做电子加速层的器件进行了对比研究,两种器件在交流电场的驱动下都得到了波峰位于417 nm的短波长发光峰,它来自有机物中电子从最低未占分子轨道到最高占据分子轨道的直接复合发光,这进一步证明了固态阴极射线理论的正确性.在交流高场下比较了Si3N4和SiO2的电子加速能力,发现SiO2的电子加速能力要优于Si3N4的电子加速能力.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号