首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
The optical and electrical properties of light-emitting field-effect transistor structures with an active layer based on nanocomposite films containing zinc oxide (ZnO) nanoparticles dispersed in the matrix of the soluble conjugated polymer MEH-PPV have been investigated. It has been found that the current-voltage characteristics of the field-effect transistor based on MEH-PPV: ZnO films with a composite component ratio of 2: 1 have an ambipolar character, and the mobilities of electrons and holes in these structures at a temperature of 300 K reach high values up to ~1.2 and ~1.4 cm2/V s, respectively, which are close to the mobilities in fieldeffect transistors based on ZnO films. It has been shown that the ambipolar field-effect transistor based on MEH-PPV: ZnO films emits light at both positive and negative gate bias voltages. The mechanisms of injection, charge carrier transport, and radiative recombination in the studied structures have been discussed.  相似文献   

2.
退火温度对ZnO薄膜结构和发光特性的影响   总被引:16,自引:0,他引:16       下载免费PDF全文
采用反应射频磁控溅射法在 Si(100)基片上制备了高c轴择优取向的ZnO薄膜,研究了退火温度对ZnO薄膜的晶粒尺度、应力状态、成分和发光光谱的影响,探讨了ZnO薄膜的紫外发光光谱和可见发光光谱与薄膜的微观状态之间的关系.研究结果显示,在600—1000℃退火温度范围内,退火对薄膜的织构取向的影响较小,但薄膜的应力状态和成分有比较明显的变化.室温下光致发光光谱分析发现,薄膜的近紫外光谱特征与薄膜的晶粒尺度和缺陷状态之间存在着明显的对应关系;而近紫外光谱随退火温度升高所呈现的整体峰位红移是各激子峰相对比例变 关键词: ZnO薄膜 退火 光致发光 射频反应磁控溅射 可见光发射  相似文献   

3.
Un-doped and Mn-doped ZnO nanoparticles were successfully synthesized in an ethanolic solution by using a sol-gel method. Material properties of the samples dependence on preparation conditions and Mn concentrations were investigated while other parameters were controlled to ensure reproducibility. It was observed that the structural properties, particle size, band gap, photoluminescence intensity and wavelength of maximum intensity were influenced by the amount of Mn ions present in the precursor. The XRD spectra for ZnO nanoparticles show the entire peaks corresponding to the various planes of wurtzite ZnO, indicating a single phase. The diffraction peaks of doped samples are slightly shifted to lower angles with an increase in the Mn ion concentration, signifying the expansion of the lattice constants and increase in the band gap of ZnO. All the samples show the absorption in the visible region. The absorbance spectra show that the excitonic absorption peak shifts towards the lower wavelength side with the Mn-doped ZnO nanoparticles. The PL spectra of undoped ZnO consist of UV emission at 388 nm and broad visible emission at 560 nm with varying relative peak intensities. The doping of ZnO with Mn quenches significantly the green emission while UV luminescence is slightly affected.  相似文献   

4.
Luminescence properties of nanocomposites consisting of ZnO nanoparticles in a conjugated polymer, poly [2-methoxy-5-(2′-ethyl hexyloxy)-phenylene vinylene] (MEH-PPV), were investigated. Photoluminescence measurements reveal a blue shift in the emission spectrum of MEH-PPV upon incorporation of ZnO nanoparticles into the polymer film while the emission is increasingly quenched with increasing ZnO concentration. In contrast, the structure of the polymer and its conjugation length are not affected by the presence of ZnO nanoparticles (up to 16 wt% ZnO) as revealed by Raman spectroscopy. The blue shift and photoluminescence quenching are explained by the separation of photogenerated electron-hole pairs at the MEH-PPV/ZnO interface and the charging of the nanoparticles.  相似文献   

5.
The photoluminescence (PL) and optical properties of CdS nanoparticles prepared by the solid-state method at low temperature have been discussed. The effects of NaCl and anionic surfactant SDBS (sodium dodecylbenzene sulfonate) on the luminescent properties of CdS nanophosphors prepared using this method, without the inert gas or the H2S environment, were studied separately. The synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), and energy dispersive X-ray spectroscopy (EDAX). UV–VIS absorption and PL spectra were also studied. XRD studies confirmed the single-phase formation of CdS nanoparticles. TEM micrograph revealed the formation of nearly spherical nanoparticles with a diameter of 2.5 nm. The PL emission for the CdS shows the main peak at 560 nm with a shoulder at 624 nm, with an increase in the PL intensity after the addition of SDBS. The effect of Mn doping on PL intensity has also been investigated. The PL spectra show that the emission intensity decreases as the dopant concentration increases.  相似文献   

6.
Well-dispersed undoped and Mg-doped ZnO nanoparticles with different doping concentrations at various annealing temperatures are synthesized using basic chemical solution method without any capping agent. To understand the effect of Mg doping and heat treatment on the structure and optical response of the prepared nanoparticles, the samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray (EDX), UV–Vis optical absorption, photoluminescence (PL), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The UV–Vis absorbance and PL emission show a blue shift with increasing Mg doping concentration with respect to bulk value. UV–Vis spectroscopy is also used to calculate the band-gap energy of nanoparticles. X-ray diffraction results clearly show that the Mg-doped nanoparticles have hexagonal phase similar to ZnO nanoparticles. TEM image as well as XRD study confirm the estimated average size of the samples to be between 6 and 12 nm. Furthermore, it is seen that there was an increase in the grain size of the particles when the annealing temperature is increased.  相似文献   

7.
In this study, we present morphology control investigations on zinc oxide (ZnO) nanorods synthesized by microwave heating of a mixture of zinc nitrate hexahydrate and hexamethylenetetramine (HMTA) precursors in deionized water (DI water). To study the morphology and structural variations of the obtained ZnO nanorods in different molar ratio of zinc nitrate hexahydrate to HMTA, X-ray diffraction (XRD), scanning electron microscopy (SEM) images, Raman scattering, and photoluminescence (PL) spectroscopy were measured. XRD and SEM images are utilized to examine the crystalline quality as well as the morphological properties of the ZnO nanorods. It is found that morphology control can be achieved by simply adjusting the reactant concentrations and the molar ratio of zinc nitrate hexahydrate to HMTA. Raman scattering and PL spectroscopy measurements were demonstrated to study the size- and shape-dependent optical response of the ZnO nanorods. The Raman scattering result shows that the intensity of LO mode at around 576 cm?1 decreases with the increase in the molar ratio of zinc nitrate hexahydrate to HMTA, indicating the reduction of defect concentrations in the synthesized ZnO nanorods. Room temperature PL spectrum of the synthesized ZnO nanorods reveals an ultraviolet (UV) emission peak and a broad visible emission. An enhancement of UV emission appears in the PL spectra as the molar ratio of zinc nitrate hexahydrate to HMTA increases, indicating that the defect concentration of the synthesized ZnO nanorods can be reduced by increasing the molar ratio.  相似文献   

8.
We report on the aerosol synthesis and optical characterization of ZnO/unoxidized graphene (UG) platelets nanocomposite films with high optical transparency (>85% at visible wavelengths). The ZnO/UG composite films, in which UG nanoplatelets are embedded in nano‐grained ZnO, were fabricated from colloidal suspensions of UG platelets with an aqueous zinc precursor. From photoluminescence (PL) spectra of the UG composite films, it was found that PL intensity decreases with the addition of UG platelets. The features of PL intensity in the UG composites are in contrast to that of ZnO/graphene oxide (G‐O) platelets composites, and can be explained by the absence of an oxygen vacancy filling effect, due to the unoxidized nature of UG and an increase in defect sites in its composites. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
Hybrid devices formed by filling porous silicon with MEH-PPV or poly [2-methoxy-5(2-ethylhexyloxy-p-phenylenevinylene)] have been investigated in this work. Analyses of the structures by scanning electron microscopy (SEM) demonstrated that the porous silicon layer was filled by the polymer with no significant change of the structures except that the polymer was infiltrated in the pores. The photoluminescence (PL) of the structures at 300 K showed that the emission intensity was very high as compared with that of the MEH-PPV films on different substrates such as crystalline silicon (c-Si) and indium tin oxide (ITO). The PL peak in the MEH-PPV/porous silicon composite structure is found to be shifted towards higher energy in comparison with porous silicon PL. A number of possibilities are discussed to explain the observations.  相似文献   

10.
Well-aligned ZnO nanorod arrays have been successfully fabricated directly on anatase TiO2 nanoparticle films via low-temperature hydrothermal processes. The effects of the reactive time, temperature and reactant concentration on the growth of the as-prepared ZnO crystals are investigated in detail, and the possible mechanisms of crystal ZnO nanorod growth are also suggested. The results show that the low reactant concentration is in favor of the increase in the aspect ratio of crystal ZnO nanorods with weak orientation, while the long reactive time and high reactant concentration are useful to prepare well-aligned crystal ZnO nanorod arrays. Interestingly, the typically constructed composite films exhibit superhydrophilic characteristic without UV irradiation. Moreover, a strong near-ultraviolet PL band centering at about 385 nm and a weak green PL band centering at about 525 nm can appear at the room temperature.  相似文献   

11.
衬底温度对ZnO薄膜的结构和光学特性的影响   总被引:1,自引:1,他引:0  
利用等离子体辅助分子束外延(P-MBE)设备在蓝宝石衬底上通过改变生长温度,制备了不同的ZnO样品.研究了衬底温度对ZnO的结构、光学和电学性质的影响.样品的晶体结构利用X射线衍射谱进行表征.X射线衍射谱表明,所有的ZnO样品都是(002)取向的六角纤锌矿结构.随着生长温度的升高,X射线的(002)衍射峰的半峰全宽逐渐...  相似文献   

12.
Stable blue-green photoluminescent ZnO-SiO2 nanocomposite particles exhibiting quantum efficiency as high as 34.8% under excitation at 360 nm were prepared using a spray-drying process from a feed solution that contained both luminescent ZnO nanoparticles synthesized by a sol-gel method and commercially-available SiO2 nanoparticles. The effects of silica nanoparticle size and SiO2-to-ZnO concentration ratio on the PL properties of the composite particles were investigated. The internal structure and chemical composition were investigated in detail using elemental mapping, which revealed that ZnO nanoparticles were well-dispersed within silica nanoparticle matrix. At a LiOH concentration of 0.23 M, the predicted ZnO crystallite diameter before and after spray drying was approximately constant at 3.3 and 3.6 nm, respectively. This result indicates that ZnO particle growth was inhibited and therefore the PL property of ZnO nanoparticles was stably preserved in the composite.  相似文献   

13.
In order to investigate the correlations of morphologies and optical properties, different morphologies of Eu-doped ZnO were synthesized by different methods. Specifically, the structure of SiO2/ZnO:Eu nanoflower was synthesized for the first time and has not been reported previously. One percent was chosen as the Eu doping concentration. The relations of the morphology, diameter, and uniformity with the PL intensity were examined. The PL intensity of ZOE samples has a close relationship with the morphology. The PL intensity order of the different morphologies of ZnO:Eu is as follows: nanorod arrays > thin film > nanospheres > nanoparticles > nanoflowers > nanorods. The PL intensity of nanomaterials is larger, if the diameter of the nanomaterials is larger. However, the size of diameter is not the most important reason. It was found that the sample uniformity plays a key role on ZnO:Eu PL intensity. ZnO:Eu with small particle diameters may have strong photoluminescence intensity, if the nanoparticles are uniform.  相似文献   

14.
We report the elaboration of vanadium-doped ZnO nanoparticles prepared by a sol–gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at.% has been investigated. After treatment in air at different temperatures, the obtained nanopowder was characterised by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). Analysis by scanning electron microscopy at high resolution shows that the grain size increases with increasing temperature. Thus, in the case of thermal treatment at 500 °C in air, the powder with an average particle size of 25 nm shows a strong luminescence band in the visible range. The intensity and energy position of the obtained PL band depends on the temperature measurement increase. The mechanism of this emission band is discussed.  相似文献   

15.
Zinc oxide (ZnO) and lead sulphide (PbS) nanoparticles separately synthesized by a precipitation method were combined by an ex situ route to prepare ZnO-PbS nanocomposites with different molar ratios of ZnO and PbS. The structure and morphology of the ZnO, PbS and ZnO-PbS samples were analyzed with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A UV-vis spectrophotometer was used to collect the absorption and 325 nm He-Cd and 488 nm Ar lasers were used to collect the photoluminescence data from the samples. ZnO nanoparticles showed a broad and stable emission peak at ∼570 nm, while a strongly quantum confined emission from PbS nanoparticles was detected at ∼1344-1486 nm. The ZnO-PbS nanocomposites exhibited dual emission in the visible and near-infrared (NIR) regions that is associated with defects and recombination of excitonic centres in the ZnO and PbS nanoparticles, respectively. The PL intensity of the visible emission from the ZnO-PbS nanocomposite was shown to increase when the ZnO to PbS molar ratio was 5:1 and the emission was almost quenched at molar ratios of 1:1 and 1:5. For different molar ratios of ZnO to PbS, the PL intensity of the NIR emission from the ZnO-PbS nanocomposites was more intense than that of PbS nanoparticles.  相似文献   

16.
Copper doped ZnO nanoparticles were synthesized by a chemical technique based on a hydrothermal method. The crystallite sizes, estimated by XRD and TEM/SEM for different doping percentage of Cu2+ (1–10%), were found to be in the range of ~10–15 nm. TEM/SEM images showed formation of uniform nanorods, the aspect ratio of which varied with doping percentage. Photoluminescence (PL) measurement showed strong green visible emission and PL intensity was found enhanced with increase in doping percentage. The increase in the PL intensity was mainly due to Cu incorporation in ZnO lattice. Currently, light-emitting diodes (LEDs) giving ultraviolet emission have been combined with broad-band visible green phosphors to make white-light LEDs. Thus, green luminescent ZnO:Cu2+ nanoparticles are seen as necessary and condemnatory constituent for white-light generation from UV LEDs, underlying the importance of the current work.  相似文献   

17.
射频磁控溅射法制备ZnO薄膜的发光特性   总被引:17,自引:5,他引:12  
利用射频磁控溅射法在硅衬底上制备出具有(002)择优取向的氧化锌薄膜,用波长为300nm的光激发,观察到在446nm处有一强的光致发光峰,它来自于氧空位浅施主能级上的电子到价带上的跃迁。并讨论了发光峰与氧压的关系以及退火对它的影响,且给出了解释。  相似文献   

18.
以热解石墨为原料,利用电化学方法,制备了荧光碳纳米颗粒。系统地研究了在不同浓度、时间、pH值、温度等条件下,Pb2+离子对碳纳米颗粒荧光发射规律的影响。实验结果表明:Pb2+离子不改变光谱形状,但可以降低荧光峰值强度;Pb2+离子作用荧光碳纳米颗粒的时间越长,猝灭效率越低;pH值不同,猝灭效率不同;随着温度的升高,Pb2+离子对碳纳米颗粒荧光的猝灭效率逐步提高。其猝灭机理可能为电荷转移猝灭和动态猝灭。  相似文献   

19.
Photoluminescence (PL), its temperature dependence, scanning electronic microscopy (SEM) and X ray diffraction (XRD) have been applied for the comparative study of varying the emission, morphology and crystal structure of ZnO and ZnO:Cu nanocrystals (NCs) versus technological routines, as well as the dependence of ZnO:Cu NC parameters on the Cu concentration. A set of ZnO and ZnO Cu NCs was prepared by the electrochemical (anodization) method at a permanent voltage and different etching durations with follows thermal annealing at 400 °C for 2 h in ambient air. The size of ZnO NCs decreases from 300 nm×540 nm down to 200 nm×320 nm with etching duration increasing. XRD study has confirmed that thermal annealing stimulates the ZnO oxidation and crystallization with the formation of wurtzite ZnO crystal lattice. XRD method has been used for monitoring the lattice parameters and for confirming the Cu doping of ZnO Cu NCs. In ZnO Cu NCs four defect related PL bands are detected with the PL peaks at 1.95–2.00 eV (A), 2.15-2.23  eV (B), 2.43–2.50 eV (C) and 2.61–2.69 eV (D). Highest PL intensities of orange, yellow and green emissions have been obtained in ZnO Cu NCs with the Cu concentration of 2.28 at%. At Cu concentration increasing (≥2.28 at%) the PL intensities of the bands A, B, C decrease and the new PL band peaked at 2.61–2.69 eV at 10 K appears in the PL spectrum. The variation of PL intensities for all PL bands versus temperature has been studied and the corresponding activation energies of PL thermal decay have been estimated. The type of Cu-related complexes is discussed using the correlation between the PL spectrum transformation and the variation of XRD parameters in ZnO Cu NCs.  相似文献   

20.
Thermo-electrical characterizations of hybrid polymer composites, made of epoxy matrix filled with various zinc oxide (ZnO) concentrations (0, 4.9, 9.9, 14.9, and 19.9 wt%), and reinforced with conductive carbon black (CB) nanoparticles (0.1 wt%), have been investigated as a function of ZnO concentration and temperature. Both the measured DC-electrical and thermal conductivities showed ZnO concentration and temperature dependencies. Increasing the temperature and filler concentrations were reflected in a negative temperature coefficient of resistivity and enhancement of the electrical conductivity as well. The observed increase in the DC conductivity and decrease in the determined activation energy were explained based on the concept of existing paths and connections between the ZnO particles and the conductive CB nanoparticles. Alteration of ZnO concentration with a fixed content of CB nanoparticles and/or temperature was found to be crucial in the thermal conductivity behavior. The addition of CB nanoparticles to the epoxy/ZnO matrix was found to enhance the electrical conduction resulting from the electronic and impurity contributions. Also, the thermal conductivity enhancement was mostly attributed to the heat transferred by phonons and electrons hopping to higher energy levels throughout the thermal processes. Scanning electron microscopy and energy-dispersive spectroscopy were used to observe the morphology and elements’ distribution in the composites. The observed thermal conductivity behavior was found to correlate well with that of the DC-electrical conductivity as a function of the ZnO content. The overall enhancements in both the measured DC- and thermal conductivities of the prepared hybrid composites are mainly produced through mutual interactions between the filling conductive particles and also from electrons tunneling in the composite's bulk as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号