首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this report, we designed a light emitting diode (LED) structure in which an N-polar p-GaN layer is grown on top of Ga-polar In0.1Ga0.9N/GaN quantum wells (QWs) on an n-GaN layer. Numerical simulation reveals that the large polarization field at the polarity inversion interface induces a potential barrier in the conduction band, which can block electron overflow out of the QWs. Compared with a conventional LED structure with an Al0.2Ga0.8N electron blocking layer (EBL), the proposed LED structure shows much lower electron current leakage, higher hole injection, and a significant improvement in the internal quantum efficiency (IQE). These results suggest that the polarization induced barrier (PIB) is more effective than the AlGaN EBL in suppressing electron overflow and improving hole transport in GaN-based LEDs.  相似文献   

2.
通过调整GaN基发光二极管(LED)表面InGaN层的厚度,发现在20 mA电流驱动下,LED器件的正向压降有明显差距.本文考虑了极化效应的影响,通过求解InGaN/GaN三角形势阱内二维空穴气浓度以及空穴隧穿概率的变化,求得了表面InGaN层厚度不同时器件正向压降的变化趋势,发现理论结果与实验结果有很好的吻合.同时得到了获得最低正向压降的表面InGaN厚度.  相似文献   

3.
顾晓玲  郭霞  吴迪  李一博  沈光地 《物理学报》2008,57(2):1220-1223
通过调整GaN基发光二极管(LED)表面InGaN层的厚度,发现在20 mA电流驱动下,LED器件的正向压降有明显差距.本文考虑了极化效应的影响,通过求解InGaN/GaN三角形势阱内二维空穴气浓度以及空穴隧穿概率的变化,求得了表面InGaN层厚度不同时器件正向压降的变化趋势,发现理论结果与实验结果有很好的吻合.同时得到了获得最低正向压降的表面InGaN厚度. 关键词: 极化 二维空穴气 隧穿概率  相似文献   

4.
Xie  Z.  Huang  J.  Feng  J.  Liu  S. 《Optical and Quantum Electronics》2000,32(12):1325-1331
Organic multiple quantum wells (MQWs) white light emitting devices are fabricated in which blue fluorescent dye, a trimer of N-anylbenzimidazole (TPBI) and orange fluorescent rubrene doped tris (8-hydroxyquinoline) Aluminum act as quantum-well light emitting layers between triphenyldiamine derivative (TPD) potential barrier layers, and aluminium complex (Alq) act as an electron transporter and green emitter. The injected carriers are confined in different quantum wells and Alq layer. The white light emission comes from a combination of photons generated in different light emitting layers. The Commission Internationale de l' Eclairage (CIE) coordinates of the emitted light are tuned by increasing the number of TPBI wells due to its low fluorescent efficiency compared with rubrene.  相似文献   

5.
围绕高性能GaN基垂直腔面发射激光器(VCSELs),设计了两种具有不同光电耦合强度的InGaN/GaN量子阱(QWs)样品,研究了它们的光学性质。样品A在腔模的两个波腹处各放置两个InGaN耦合量子阱,而样品B在腔模的一个波腹处放置5个InGaN耦合量子阱。计算表明样品A具有较大的相对光限制因子1.79,而样品B为1.47。光学测试发现样品A有着更高的内量子效率(IQE)和更高的辐射复合效率。使用两种样品制作了光泵VCSEL结构,在光激发下实现激射,其中基于样品A的VCSEL有着更低的激射阈值。结果表明有源区结构会显著影响量子阱与光场的耦合作用、外延片的内量子效率、辐射复合寿命和VCSEL激射阈值,同时也说明样品A的有源区结构更有利于制作低阈值的VCSEL器件。  相似文献   

6.
7.
刘扬  杨永春 《中国物理 B》2016,25(5):58101-058101
The effects of Mg doping in the quantum barriers(QBs) on the efficiency droop of GaN based light emitting diodes(LEDs) were investigated through a duel wavelength method. Barrier Mg doping would lead to the enhanced hole transportation and reduced polarization field in the quantum wells(QWs), both may reduce the efficiency droop. However,heavy Mg doping in the QBs would strongly deteriorate the crystal quality of the QWs grown after the doped QB. When increasing the injection current, the carriers would escape from the QWs between n-GaN and the doped QB and recombine non-radiatively in the QWs grown after the doped QB, leading to a serious efficiency droop.  相似文献   

8.
采用银纳米圆盘阵列提高LED发光特性的研究   总被引:1,自引:1,他引:0  
张振明  李康  孔凡敏  高晖 《光学学报》2012,32(4):423001-250
为了提高GaN基蓝光LED的发光效率,设计了在LED有源层上方引入银纳米圆盘阵列的模型。利用时域有限差分方法计算了银纳米圆盘阵列不同结构参数情况下LED有源层自发辐射率的变化情况及光提取效率值。通过对有源区的近场分布和LED远场方向性的分析,理论上解释了利用该金属纳米结构生成的表面等离激元对LED性能增强的影响,利用该模型可使得表面等离激元与有源层有效耦合,从而增强有源层的自发辐射率。此外,银纳米粒子组成的阵列结构所生成的栅格矢量可以补偿表面等离激元的波矢量,从而可将局域化表面等离激元转为辐射性表面等离激元,显著提高LED顶端光提取效率。结果表明,当银纳米圆盘颗粒满足直径为120nm,厚度为30nm时,含该结构的GaN基蓝光LED自发辐射率比普通LED增强了3.6倍。在此基础上,当其按照晶格常数为220nm的三角晶格排列时,顶端光提取效率增强为2.5倍。这些结果为实际的高性能GaN基LED的设计与优化提供了一定的参考。  相似文献   

9.
一种新型有机电致微腔结构的双模发射   总被引:4,自引:4,他引:0  
采用结构Glass/DBR/ITO/NPB/NPB:Alq/Alq/Al制作了有机微腔电致发光器件。将空穴传输材料与发光材料以一定比例混合作为发光层,为了便于对比,在不改变有机层的膜厚的情况下同时制作了传统的异质结微腔器件,发现两种器件的发光光谱有很大不同,器件的复合效率与传统的异质结器件相比也得到了很大提高,这是因为将两种有机材料混合能消除界面势垒,提高器件的复合效率,从而提高了器件的发光性能,实现了微腔双模发射,且两个模式的半峰全宽分别为8nm和12nm。通过进一步优化器件结构可以实现微腔白光发射。  相似文献   

10.
GaN-based blue laser diodes (LDs) may exhibit anomalous temperature characteristics such as a very high or negative characteristic temperature (T 0). In this work, the temperature characteristics of blue LDs having InGaN double quantum-well (QW) active region are investigated using numerical simulation. It is found that the T 0 is greatly influenced by the n-type doped barrier between the QWs and a negative T 0 can be observed for the LD structure with a heavily doped barrier. The negative T 0 of InGaN blue LDs is mainly attributed to the decrease of the Auger recombination rate at the p-side QW with increasing temperature as a result of the thermally enhanced hole transport from the p-side to the n-side QW.  相似文献   

11.
We have fabricated multi‐peak and chromaticity‐stable top‐emitting white organic light‐emitting diodes (TEWOLEDs) using single blue emitter. Besides the intrinsic emission of blue emitter, the additional emission can be well realized by simply adjusting the thickness of hole transporting layer (HTL), thus modifying the optical cavity length to obtain different resonant wavelengths. The detailed variation process for multi‐peak spectra with the increase of HTL thickness is studied, which provides a guidance for the design of microcavity TEWOLEDs.

  相似文献   


12.
A quantum dot spin light emitting diode provides a test of carrier spin injection into a qubit and a means for analyzing carrier spin injection and local spin polarization. Even with 100% spin-polarized carriers the emitted light may be only partially circularly polarized due to the geometry of the dot. We have calculated carrier polarization-dependent optical matrix elements for InAs/GaAs self-assembled quantum dots (SAQDs) for electron and hole spin injection into a range of quantum dot sizes and shapes, and for arbitrary emission directions. Calculations for typical SAQD geometries with emission along [110] show light that is only 5% circularly polarized for spin states that are 100% polarized along [110]. Measuring along the growth direction gives near unity conversion of spin to photon polarization and is the least sensitive to uncertainties in SAQD geometry.  相似文献   

13.
The plasma parameters, discharge plasma uniformity and filamentation processes in high pressure (near atmospheric pressure) dielectric barrier discharges (DBD) in argon are studied using the developed two-dimensional 2D(r, z) model. The applied voltage frequency, the voltage shape, the dielectric layers material and its thickness are varied and the effects of such variations on plasma uniformity, discharge structure and operation are studied. The DBD discharges with different dielectric layers thickness, dielectric constants and secondary electron emission coefficients are simulated. It was shown that the dielectric layer thickness is an important parameter for producing high pressure discharges uniform over the radius. The possibility of the radially uniform discharges at atmospheric pressure was shown in the present study.  相似文献   

14.
Progress with GaN-based light emitting diodes(LEDs) that incorporate nanostructures is reviewed,especially the recent achievements in our research group.Nano-patterned sapphire substrates have been used to grow an Al N template layer for deep-ultraviolet(DUV) LEDs.One efficient surface nano-texturing technology,hemisphere-cones-hybrid nanostructures,was employed to enhance the extraction efficiency of In GaN flip-chip LEDs.Hexagonal nanopyramid GaN-based LEDs have been fabricated and show electrically driven color modification and phosphor-free white light emission because of the linearly increased quantum well width and indium incorporation from the shell to the core.Based on the nanostructures,we have also fabricated surface plasmon-enhanced nanoporous GaN-based green LEDs using AAO membrane as a mask.Benefitting from the strong lateral SP coupling as well as good electrical protection by a passivation layer,the EL intensity of an SP-enhanced nanoporous LED was significantly enhanced by 380%.Furthermore,nanostructures have been used for the growth of GaN LEDs on amorphous substrates,the fabrication of stretchable LEDs,and for increasing the3-d B modulation bandwidth for visible light communication.  相似文献   

15.
王新强  黎大兵  刘斌  孙钱  张进成 《发光学报》2016,(11):1305-1309
高质量氮化镓(Ga N)材料是发展第三代半导体光电子与微电子器件的根基。大失配、强极化和非平衡态生长是Ga N基材料及其量子结构的固有特点,对其生长动力学和载流子调控规律的研究具有重要的科学意义与实用价值,受到各国科学界与产业界广泛高度重视。本文对大失配、强极化氮化物半导体材料体系外延生长动力学和载流子调控规律进行了研究,旨在攻克蓝光发光效率限制瓶颈,突破高Al和高In氮化物材料制备难题,实现高发光效率量子阱和高迁移率异质结构,制备多波段、高效率发光器件和高频率、高耐压电子器件,实现颠覆性的技术创新和应用,带动电子材料产业转型升级。  相似文献   

16.
The problem of exciton light absorption in quasi-two-dimensional inhomogeneous systems in a strong transverse magnetic field H is analyzed. We assume that a random Gaussian field (“white noise”) acting separately on an electron and a hole is due to (1) fluctuations in the quantum well thickness or (2) fluctuations in the concentrations of the solid solution components. The problem of a magnetoexciton in a random Gaussian white noise field has been reduced to the problem of the motion in an H-dependent effective field of a single particle with the effective magnetic mass of the exciton, which is a function of the magnetic field and parameters of the quantum wells, in a field characterized by “colored noise,” whose correlation function is different from that of the white noise field. In this approximation, the problem of a magnetoexciton in isolated and coupled quantum dots is considered. In the coherent-potential approximation, the exciton absorption in random fields of the first and second type in single and coupled quantum wells has been calculated. The absorption decreases as H increases in the range of strong magnetic fields, which is in agreement with experimental data. Zh. éksp. Teor. Fiz. 114, 1451–1465 (October 1998)  相似文献   

17.
Stimulated far IR emission due to l-h as well as cyclotron transitions of hot holes in uniaxially stressedp-Ge (P H E) was studied. The results obtained showed the significance of intersub-band hole tunnelling for these mechanisms of generation and may be explained by a change in tunnelling produced by the stress. A considerable expansion of the stimulated light hole cyclotron emission band was observed in a stressed crystal. This expansion allows covering (in one sample) of all generation bands in the light hole cyclotron resonance (CR) masers in unstressedp-Ge, reported so far.  相似文献   

18.
The property of hole capture of quantum wells is important in the static properties of lasers above threshold, such as the differential efficiency and light output power. We investigate experimentally the hole capture rate and its influence on the carrier overflow in the optical confinement layers for compressive-strained, tensile-strained and unstrained GaInAs/GaInAsP/InP quantum-well lasers emitting at 1.5 m by measuring the spontaneous emission from the optical confinement layers above threshold. The carrier density in the optical confinement layers increases with current owing to finite hole capture rates. This increase is dependent on well thickness and barrier height determined by the strain. This increase is comparable in the tensile-strained and unstrained lasers with relatively low threshold, while in the compressive-strained laser it is about double that in the other two types. The dependence of this increase on threshold carrier density is also observed, that is the carrier density in the optical confinement layers increases rapidly in high-threshold samples, in particular, in the tensile-strained laser with large hole barrier height. From these results, laser operation with high output power and high efficiency is expected by reducing threshold carrier density in the tensile-strained laser and by increasing well numbers in the compressive-strained laser as long as the inhomogeneous injection between wells is not severe. By fitting measurements with theory, the hole capture time is estimated as 0.1 to 0.25 ps in these strained and unstrained lasers.  相似文献   

19.
Based on the framework of effective-mass approximation and variational approach, optical properties of exciton are investigated theoretically in ZnO/MgxZn1−xO vertically coupled quantum dots (QDs), with considering the three-dimensional confinement of electron and hole pair and the strong built-in electric field effects due to the piezoelectricity and spontaneous polarization. The exciton binding energy, the emission wavelength and the oscillator strength as functions of the different structural parameters (the dot height and the barrier thickness between the coupled wurtzite ZnO QDs) are calculated with the built-in electric field in detail. The results elucidate that structural parameters have a significant influence on the exciton state and optical properties of ZnO coupled QDs. These results show the optical and electronic properties of the quantum dot that can be controlled and also tuned through the nanoparticle size variation.  相似文献   

20.
The fission fragment angular distributions have been measured for the neutron fission of 232Th at a number of energies near the neutron threshold. An exhaustive search has been made for a set of transition states and barrier parameters that would simultaneously fit the angular distributions and reproduce quantitatively the structure seen in the neutron fission cross section. No satisfactory fit to both types of data could be obtained with a double-humped fission barrier. However, use of a triple-humped fission barrier does provide a reasonable fit to all the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号