首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Nitric oxide chemistry and photochemistry on the Cr-terminated surface of α-Cr2O3(0001) were examined using temperature programmed desorption (TPD), sticking coefficient measurements and photodesorption. NO exposed to α-Cr2O3(0001) at 100 K binds at surface Cr cation sites forming a strongly bound surface species that thermally desorbs at 320–340 K, depending on coverage. No thermal decomposition was detected in TPD in agreement with previous results in the literature. Sticking probability measurements at 100 K indicated near unity sticking for NO up to coverages of ~ 1.3 ML, with additional adsorption with higher exposures at decreased sticking probability. These results suggest that some Cr cation sites on the α-Cr2O3(0001) surface were capable of binding more than one NO molecule, although it is unclear whether this was as separate NO molecules or as dimers. Photodesorption of adsorbed NO was examined for surface coverages below the 1 ML point. Both visible and UV light were shown to photodesorb NO without detectable NO photodecomposition. Visible light photodesorption of NO occurred with a greater cross section than estimated using UV light. The visible light photodesorption event was not associated with bandgap excitation in α-Cr2O3(0001), but instead was linked to excitation of a surface Cr3 +–NO? charge transfer complex. These results illustrate that localized photoabsorption events at surface sites with unique optical properties (relative to the bulk) can result in unexpected surface photochemistry.  相似文献   

2.
The chemistry and photochemistry of methylene bromide (CD2Br2) on the rutile TiO2(110) surface was probed using temperature programmed desorption (TPD). CD2Br2 desorbed in three desorption states at 145, 160 and 250 K tentatively assigned to desorption from the multilayer, from an η1-CD2Br2 species and a bridging η2-CD2Br2 species, respectively. The latter two TPD states presumably involve binding of CD2Br2 molecules to the surface through Br coordination at five-coordinate Ti4+ surface sites. The 160 and 250 K TPD states saturated at coverages of 1.0 and 0.33 ML, respectively, where 1 ML is equivalent to the surface Ti4+ site density (5.2 × 1014 cm? 2). No thermal decomposition of CD2Br2 was observed on either the clean surface or with preadsorbed O2. UV irradiation of CD2Br2 on TiO2(110) resulted in predominately photodesorption, with trace amounts of photodecomposition evidenced in TPD. The rate of CD2Br2 photodesorption from TiO2(110) occurred with a low cross section (~ 2 × 10? 21 cm2) similar to that expected from direct optical excitation of CD2Br2. This observation suggests that charge carriers generated in TiO2(110) were no more effective in activating adsorbed CD2Br2 molecules than would be expected through direct molecular excitation. These findings suggest that photocatalytic destruction of halocarbons such as CD2Br2 on TiO2 may preferentially occur though indirect processes (such as OH radical attack) as opposed to direct electron transfer processes involving charge carriers generated in TiO2 by bandgap excitation.  相似文献   

3.
We have compared the adsorption properties of small Aun (n = 1–8) nanoparticles on the defect-free (stoichiometric) and defective (partially reduced) brookite TiO2(210) and anatase TiO2(101) surfaces using density functional theory calculations. The interaction between Au atoms and anatase TiO2(101) was determined to be quite weak and small Aun particles grown at defects (O vacancies) prefer extended 2D structures. By contrast, dispersion and 3D configurations appear to be favored at brookite TiO2(210) for Aun nanoparticles due to their strong interaction. Calculations of CO oxidation at Aun (n = 6–8) particles supported at defective brookite TiO2(210) show that occurrence of protruding low-coordinated Au atoms is essential for favorable CO adsorption and subsequent reaction with O2. In particular, the configuration of the Aun nanoparticles can determine the energetics in the formation of active Au atoms, and their mobility also affects the reaction between CO and O2 (or O).  相似文献   

4.
The ultraviolet (UV) photon induced decomposition of acetaldehyde adsorbed on the oxidized rutile TiO2(1 1 0) surface was studied with photon stimulated desorption (PSD) and thermal programmed desorption (TPD). Acetaldehyde desorbs molecularly from TiO2(1 1 0) with minor decomposition channels yielding butene on the reduced TiO2 surface and acetate on the oxidized TiO2 surface. Acetaldehyde adsorbed on oxidized TiO2(1 1 0) undergoes a facile thermal reaction to form a photoactive acetaldehyde–oxygen complex. UV irradiation of the acetaldehyde–oxygen complex initiated photofragmentation of the complex resulting in the ejection of methyl radical into gas phase and conversion of the surface bound fragment to formate.  相似文献   

5.
In the present work, combination of ultraviolet (UV) irradiations (using 8 W UV tube) with ultrasonic (US) irradiations (rated power 1 kW and frequency of 25 kHz) has been investigated for the degradation of phenol at pilot scale of operation. Different modes of operation viz. UV alone, US alone, UV/US, UV/TiO2 (photocatalysis), UV/H2O2, UV/NaCl, UV/US/TiO2 (sonophotocatalysis) and H2O2 assisted sonophotocatalysis have been investigated with an objective of maximizing the extent of phenol degradation. Effect of presence of hydrogen peroxide and sodium chloride at a concentration of 10 g/l and TiO2 over a range of 0.5–2.5 g/l has been investigated. It has been observed that 2.0 g/l of TiO2 is the optimum concentration, beyond which a decrease in the extent of degradation is observed. Maximum extent of degradation of phenol was 37.75% for H2O2 assisted photosonocatalysis at pH of 2. The present work is first of its kind to report the use of combined ultrasonic and UV irradiations at pilot scale operation and obtained results should induce some degree of certainty in proposed industrial applications of sonochemical reactors for wastewater treatment.  相似文献   

6.
《Solid State Ionics》2006,177(13-14):1205-1210
A comparative investigation of the much-studied La2NiO4+δ (n = 1) phase and the higher-order Ruddlesden-Popper phases, Lan+1NinO3n+1 (n = 2 and 3), has been undertaken to determine their suitability as cathodes for intermediate-temperature solid-oxide fuel cells. As n is increased, a structural phase transition is observed from tetragonal I4/mmm in the hyperstoichiometric La2NiO4.15 (n = 1) to orthorhombic Fmmm in the oxygen-deficient phases, La3Ni2O6.95 (n = 2) and La4Ni3O9.78 (n = 3). High temperature d.c. electrical conductivity measurements reveal a dramatic increase in overall values from n = 1, 2 to 3 with metallic behavior observed for La4Ni3O9.78. Impedance spectroscopy measurements on symmetrical cells with La0.9Sr0.10Ga0.80Mg0.20O3−δ (LSGM-9182) as the electrolyte show a systematic improvement in the electrode performance from La2NiO4.15 to La4Ni3O9.78 with ∼ 1 Ω cm2 observed at 1073 K for the latter. Long-term thermal stability tests show no impurity formation when La3Ni2O6.95 and La4Ni3O9.78 are heated at 1123 K for 2 weeks in air, in contrast to previously reported data for La2NiO4.15. The relative thermal expansion coefficients of La3Ni2O6.95 and La4Ni3O9.78 were found to be similar at ∼ 13.2 × 10 6 K 1 from 348 K to 1173 K in air compared to 13.8 × 10 6 K 1 for La2NiO4.15. Taken together, these observations suggest favourable use for the n = 2 and 3 phases as cathodes in intermediate-temperature solid-oxide fuel cells when compared to the much-studied La2NiO4+δ (n = 1) phase.  相似文献   

7.
Industrial wastewaters containing biorefractory compounds like cyanide offer significant environmental problems attributed to the fact that the conventional methods have limited effectiveness and hence developing efficient treatment approaches is an important requirement. The present work investigates the use of novel treatment approach of ultrasound (US) combined with advanced oxidation techniques for the degradation of potassium ferrocyanide (KFC) for the first time. An ultrasonic bath equipped with longitudinal horn (1 kW rated power and 25 kHz frequency) has been used. The effect of initial pH (2–9) on the progress of degradation has been investigated initially and subsequently using the optimized pH, effect of addition of hydrogen peroxide (ratio of KFC:H2O2 varied over the range of 1:0.5–1:5) and TiO2 in the presence of H2O2 (1:1 ratio by weight of TiO2) as process intensifying approach has been studied. Combination of ultrasonic irradiation with ozone (O3) (100–400 mg/h) and ultraviolet irradiation (UV) has also been investigated. Use of combination of US with H2O2, H2O2 + TiO2 and ozone resulted in extent of KFC degradation as 54.2%, 74.82% and 82.41% respectively. Combination of US with both UV and ozone was established to be the best approach yielding 92.47% degradation. The study also focused on establishing kinetic rate constants for all the treatment approaches which revealed that all the approaches followed first order kinetic mechanism with higher rate constants for the combination approaches. Overall, it has been conclusively established that ultrasound based combined treatment schemes are very effective for the treatment of KFC containing wastewaters.  相似文献   

8.
In this research, Fe-doped TiO2 nanoparticles with various Fe concentrations (0. 0.1, 1, 5 and 10 wt%) were prepared by a sol–gel method. Then, nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray analysis (EDX), BET surface area, photoluminescence (PL) spectroscopy and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity of the nano-particles was evaluated through degradation of reactive red 198 (RR 198) under UV and visible light irradiations. XRD results revealed that all samples contained only anatase phase. DRS showed that the Fe doping in the titania induced a significant red shift of the absorption edge and then the band gap energy decreased from 3 to 2.1 eV. Photocatalytic results indicated that TiO2 had a highest photocatalytic decolorization of the RR 198 under UV irradiation whereas photocatalytic decolorization of the RR 198 under visible irradiation increased in the presence of Fe-doped TiO2 nanoparticles. Among the samples, Fe-1 wt% doped TiO2 nanoparticles showed the highest photocatalytic decolorization of RR198 under visible light irradiation.  相似文献   

9.
Dye sensitized solar cells (DSSCs) were fabricated based on coumarin NKX-2700 dye sensitized bi-layer photoanode and quasi-solid state electrolyte sandwiched together with cobalt sulfide coated counter electrode. A novel bi-layer photoanode has been prepared using composite mixtures of 90 wt.% TiO2 nanoparticles + 10 wt.% TiO2 nanowires (TNPWs) as active layer and Nb2O5 is coated on the active layer, which acts as scattering layer. Hafnium oxide (HfO2) was applied over the TNPWs/Nb2O5 photoanode film, as a blocking layer. TiO2 nanoparticles (TNPs), TiO2 nanowires (TNWs) and TNPWs/Nb2O5 were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The sensitizing organic dye coumarin NKX-2700 displayed maximum absorption wavelength (λmax) at 525 nm, which could be observed from the UV–vis spectrum. DSSC-1 fabricated with composite bi-layer photoanode revealed enhanced photo-current efficiency (PCE) as compared to other DSSCs and illustrated photovoltaic parameters; short-circuit current JSC = 18 mA/cm2, open circuit voltage (VOC) = 700 mV, fill factor (FF) = 64% and PCE (η) = 8.06%. The electron transport and charge recombination behaviors of DSSCs were investigated by electrochemical impedance spectra (EIS) and the results illustrated that the DSSC-1 showed the lowest charge transport resistance (Rtr) and the longest electron lifetime (τeff). Therefore, in the present investigation, it could be concluded that the novel bi-layer photoanode with blocking layer increased the short circuit current, electron transport and suppressed the recombination of charge carriers at the photoanode/dye/electrolyte interface in DSSC-1.  相似文献   

10.
Sonodynamic therapy (SDT) is a new treatment modality using ultrasound to activate certain chemical sensitizers for cancer therapy. In this study, effects of high intensity focused ultrasound (HIFU) combined with photocatalytic titanium dioxide (TiO2) nanoparticles on human oral squamous cell line HSC-2 were investigated. Viability of HSC-2 cells after 0, 0.1, 1, or 3 s of HIFU irradiation with 20, 32, 55 and 73 W cm−2 intensities in the presence or absence of TiO2 was measured immediately after the exposures in vitro. Immediate effects of HIFU (3 s, 73 W cm−2) combined with TiO2 on solid tumors were also examined by histological study. Cytotoxic effect of HIFU + TiO2 in vitro was significantly higher than that of TiO2 or HIFU alone with the tendency to increase for higher HIFU intensity, duration, and TiO2 concentration in the suspension. In vivo results showed significant necrosis and tissue damage in HIFU and HIFU + TiO2 treated samples. However, penetration of TiO2 nanoparticles into the cell cytoplasm was only observed in HIFU + TiO2 treated tissues. In this study, our findings provide a rational basis for the development of an effective HIFU based sonodynamic activation method. This approach offers an attractive non-invasive therapy technique for oral cancer in future.  相似文献   

11.
The removal of Orange II (O-II) from aqueous solution under irradiation at 850 kHz has been studied. The effects of both homogeneous (with FeSO4/H2O2), and heterogeneous (Fe containing ZSM-5 zeolite/H2O2) Fenton type reagents are reported together with the effect of UV irradiation in combination with ultrasound both alone and with homogeneous Fenton-type reagent.Degrees of decolourisation of 6.5% and 28.9% were observed using UV radiation and ultrasound, respectively, whereas under the simultaneous irradiation of ultrasound and UV light, the decolourisation degree reached 47.8%, indicating a synergetic effect of ultrasound and UV light. The decolourisation was increased with the addition of Fenton’s reagent with an optimal Fenton molar reagent ratio, Fe2+:H2O2 of 1:50. In the combined process of ultrasound and UV light with the homogeneous Fenton system 80.8% decolourisation could be achieved after 2 h indicating that UV improves this type of Orange II degradation. The degree of decolourisation obtained using the heterogeneous sono-Fenton system (Fe containing ZSM-5 zeolite catalysts + H2O2 + ultrasound) were consistently lower than the traditional homogeneous ultrasound Fenton system. This can be attributed to the greater difficulty of the reaction between Fe ions and hydrogen peroxide.In all cases the Orange II ultrasonic decolourisation was found to follow first order kinetics.  相似文献   

12.
In-situ gas-injection transmission electron microscopy revealed that a pillar grew at the edge of the interface of a gold nanoparticle and a TiO2 substrate during exposure to O2 gas at 100 Pa. The pillar was found to have a titanium-deficient chemical composition of Ti1 ? xO2 (x > 0) by electron energy loss spectroscopy (EELS). The spectra showed a chemical shift of oxygen and titanium ions to have ionic states of Ti3+ and Oy? (y < 3/2). The formation of the Ti1 ? xO2 at the contact edge of gold–Ti1 ? xO2 interface is discussed from the perspective of an O2 affinity, which plays an important role in CO oxidation process of supported gold particle.  相似文献   

13.
Nb-doped TiO2−x thin films were deposited using a 1 at% niobium doped titanium target by RF reactive magnetron sputtering at various oxygen partial pressures (pO2). The films appeared amorphous in the pO2 range of 4.4–4.7% with resistivity ranging from 0.39 Ω cm to 2.48 Ω cm. Compared to pure TiO2−x films, the resistivity of the Nb-doped TiO2−x films did not change sensitively with the oxygen partial pressure, indicating that the resistivity of the films can be accurately controlled. 1/f noise parameter of Nb-doped TiO2−x films were found to decrease largely while the measured temperature coefficient of resistance (TCR) of the films was still high. The obtained results indicate that Nb-doped TiO2−x films have great potential as an alternative bolometric material.  相似文献   

14.
《Solid State Ionics》2006,177(1-2):77-87
The incorporation of alkali cations into the tunneled structure of Ga4TiO8 was investigated and compared to predictions based on atomistic computer simulations. Samples were prepared as AxGa4−xTi1−xO8, A=Li, Na, and K, x  0.7, and as NaxGa4+xTi2−xO10 (x = 0.7, 0.85, and 1.0) using solid-state reactions at 1050–1350 °C. The sodium-containing tunneled structure, NaxGa4−xTi1−xO8, formed via solid-state reaction, but the potassium and lithium analogs did not. Instead, these systems formed mixed-phase assemblages, which are discussed in reference to compatibility triangles in the Li2O–Ga2O3–TiO2 and K2O–Ga2O3–TiO2 systems. Experimental results were compared to the results of energy minimization calculations using the General Utility Lattice Program (GULP). For the lithium-containing system, the computer simulations correctly predicted the formation of a mixed-phase assemblage containing LiGa5O8, Ga2O3, and TiO2. For the sodium- and potassium-containing system, the computer simulations suggested that mixtures of the single-cation oxide components should be the stable phase assemblages, in contradiction with experimentally observed results. Energy minimization calculations conducted on structurally different NaxGa4+xTi2−xO10 and NaxGa4+xTi3−xO12 phases indicated that those based on the n = 6 and n = 7 β-gallia rutile intergrowth structures have lower lattice energies than the experimentally observed sodium titanogallate structures reported previously in literature.  相似文献   

15.
The CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites were prepared by dispersing various nano-sized oxides (CeO2, SnO2, ZrO2 and TiO2) with ultrasound and mixing TiO2 with CeO2, SnO2 and ZrO2, respectively, in boiling water in a molar ratio of 4:1, followed by calcining temperature 500 °C for 60 min. Then a series of sonocatalytic degradation experiments were carried out under ultrasonic irradiation in the presence of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites and nano-sized TiO2 powder. Also, the influences of heat-treatment temperature and heat-treatment time on the sonocatalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites, and of irradiation time and solution acidity on the sonocatalytic degradation of Acid Red B were investigated by UV–vis spectra. It was found that the sonocatalytic degradation of Acid Red B shows significant variation in rate and ratio that decreases in order: CeO2/TiO2 > SnO2/TiO2 > TiO2 > ZrO2/TiO2 > SnO2 > CeO2 > ZrO2, and the corresponding ratios of Acid Red B in aqueous solution are 91.32%, 67.41%, 65.26%, 41.67%, 28.34%, 26.75% and 23.33%, respectively. And that the degradation ratio is only 16.67% under onefold ultrasonic irradiation. Because of the good degradation efficiency, this method may be an advisable choice for the treatment of non- or low-transparent wastewaters in the future.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(5):1752-1762
The aim of this study is to investigate modified TiO2 doped with C4H4O6HK as heterogeneous solid base catalyst for transesterification of non-edible, Silybum marianum oil to biodiesel using methanol under ultrasonication. Upon screening the catalytic performance of modified TiO2 doped with different K-compounds, 0.7 C4H4O6HK doped on TiO2 was selected. The preparation of the catalyst was done using incipient wetness impregnation method. Having doped modified TiO2 with C4H4O6HK, followed by impregnation, drying and calcination at 600 °C for 6 h, the catalyst was characterized by XRD, FTIR, SEM, BET, TGA, UV and the Hammett indicators. The yield of the biodiesel was proportional to the catalyst basicity. The catalyst had granular and porous structures with high basicity and superior performance. Combined conditions of 16:1 molar ratio of methanol to oil, 5 wt.% catalyst amount, 60 °C reaction temperature and 30 min reaction time was enough for maximum yield of 90.1%. The catalyst maintained sustained activity after five cycles of use. The oxidative stability which was the main problem of the biodiesel was improved from 2.0 h to 3.2 h after 30 days using ascorbic acid as antioxidant. The other properties including the flash point, cetane number and the cold flow ones were however, comparable to international standards. The study indicated that Ti-0.7-600-6 is an efficient, economical and environmentally, friendly catalyst under ultrasonication for producing biodiesel from S. marianum oil with a substantial yield.  相似文献   

17.
N-doped TiO2 film was synthesized on indium–tin oxide (ITO) conducting glass substrate by the hydrolysis method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Then high porous NiO was deposited onto the TiO2?xNx layer by chemical bath deposition (CBD) to prepare a double-layer TiO2?xNx/NiO electrode. The photoelectrochromic properties of the TiO2?xNx/NiO electrode were discussed through the results of UV–vis transmittance spectra, cyclic voltammogram and photocurrent transient measurements. It was found that the TiO2?xNx/NiO electrode was sensitive to light and exhibited a noticeable photoelectrochromism. The NiO film changed its color from colorless to brown, and the transmittance varied from 86.8% to 14.5% at 500 nm after 1 h irradiation.  相似文献   

18.
(5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, as a high effective sonocatalyst, was prepared using sol-gel and calcination method. Then it was characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of the prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, the sonocatalytic decomposition of ametryn was studied. In addition, some influencing factors such as different Ti/Ta molar ratios on the sonocatalytic activity of the prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, catalyst added amount with ultrasonic irradiation time and used times on the sonocatalytic decomposition efficiency were examined by using ion chromatogram determination. The experimental results showed that the best sonocatalytic decomposition ratio of ametryn were 77.50% based on the N atom calculation and 95.00% based on the S atom calculation, respectively, when the conditions of 10.00 mg/L initial concentration, 1.00 g/L prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder (Ti/Ta = 1.00:0.25 heat-treated at 550 °C for 3.0 h) added amount, 150 min ultrasonic irradiation (40 kHz frequency and 300 W output power), 100 mL total volume and 25–28 °C temperature were adopted. Therefore, the (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) composite nanoparticles could be considered as an effective sonocatalyst for decomposition of ametryn in aqueous solution.  相似文献   

19.
The present study demonstrated the enhanced hydroxyl (OH) radical generation by combined use of dual-frequency (0.5 MHz and 1 MHz) ultrasound (US) and titanium dioxide (TiO2) nanoparticles (NPs) as sonocatalyst. The OH radical generation became the maximum, when 0.5 MHz US was irradiated at an intensity of 0.8 W/cm2 and 1 MHz US was irradiated at intensities at 0.4 W/cm2 in the presence of TiO2 NPs under the examined conditions. After incorporation of TiO2 NPs modified with targeting protein pre-S1/S2, HepG2 cancer cells were subjected to the dual-frequency US at optimum irradiation intensities (“targeted-TiO2/dual-US treatment”). Growth of the HepG2 cells was reduced by 46% compared with the control condition after irradiation of dual-frequency US for 60 s with TiO2 NPs incorporation. In contrast, HepG2 cell growth was almost the same as that in the control condition when cells were irradiated with either 0.5 MHz or 1 MHz ultrasound alone without TiO2 NP incorporation.  相似文献   

20.
A novel H3PW12O40/TiO2 (anatase) composite photocatalyst was prepared by a high-intensity ultrasonic method using a lower temperature (80 °C) and was characterized by XRD and FT-IR. Its photocatalytic activity, using solar light, was evaluated through the degradation of organic dye methylene blue (MB) in aqueous. When MB solution (50 mg/l, 200 ml) containing H3PW12O40/TiO2 (anatase) (0.4 g) was degraded by solar irradiation after 90 min, the removal of concentration and TOC of MB reached 95% and 73%, respectively. The photocatalyst activity of H3PW12O40/TiO2 (anatase) was much higher than TiO2 which was prepared in the same way. H3PW12O40/TiO2 remained efficient after five repeated experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号