首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitric oxide chemistry and photochemistry on the Cr-terminated surface of α-Cr2O3(0001) were examined using temperature programmed desorption (TPD), sticking coefficient measurements and photodesorption. NO exposed to α-Cr2O3(0001) at 100 K binds at surface Cr cation sites forming a strongly bound surface species that thermally desorbs at 320–340 K, depending on coverage. No thermal decomposition was detected in TPD in agreement with previous results in the literature. Sticking probability measurements at 100 K indicated near unity sticking for NO up to coverages of ~ 1.3 ML, with additional adsorption with higher exposures at decreased sticking probability. These results suggest that some Cr cation sites on the α-Cr2O3(0001) surface were capable of binding more than one NO molecule, although it is unclear whether this was as separate NO molecules or as dimers. Photodesorption of adsorbed NO was examined for surface coverages below the 1 ML point. Both visible and UV light were shown to photodesorb NO without detectable NO photodecomposition. Visible light photodesorption of NO occurred with a greater cross section than estimated using UV light. The visible light photodesorption event was not associated with bandgap excitation in α-Cr2O3(0001), but instead was linked to excitation of a surface Cr3 +–NO? charge transfer complex. These results illustrate that localized photoabsorption events at surface sites with unique optical properties (relative to the bulk) can result in unexpected surface photochemistry.  相似文献   

2.
Michael A. Henderson 《Surface science》2010,604(19-20):1800-1807
The photochemical properties of the Cr-terminated α-Cr2O3(0001) surface were explored using methyl bromide (CH3Br) as a probe molecule. CH3Br adsorbed and desorbed molecularly from the Cr-terminated α-Cr2O3(0001) surface without detectable thermal decomposition. Temperature programmed desorption (TPD) revealed a CH3Br desorption state at 240 K for coverages up to 0.5 ML, followed by more weakly bound molecules desorbing at 175 K for coverages up to 1 ML. Multilayer exposures led to desorption at ~ 130 K. The CH3Br sticking coefficient was unity at 105 K for coverages up to monolayer saturation, but decreased as the multilayer formed. In contrast, pre-oxidation of the surface (using an oxygen plasma source) led to capping of surface Cr3+ sites and near complete removal of CH3Br TPD states above 150 K. The photochemistry of chemisorbed CH3Br was explored on the Cr-terminated surface using post-irradiation TPD and photon stimulated desorption (PSD). Irradiation of adsorbed CH3Br with broad band light from a Hg arc lamp resulted in both photodesorption and photodecomposition of the parent molecule at a combined cross section of ~ 10? 22 cm2. Photodissociation of the CH3–Br bond was evidenced by both CH3 detected in PSD and Br atoms left on the surface. Use of a 385 nm cut-off filter effectively shut down the photodissociation pathway but not the parent molecule photodesorption process. From these observations it is inferred that d-to-d transitions in α-Cr2O3, occurring at photon energies < 3 eV, do not significantly promote photodecomposition of adsorbed CH3Br. It is unclear to what extent band-to-band versus direct CH3Br photolysis play in CH3–Br bond dissociation initiated by more energetic photons.  相似文献   

3.
The ultraviolet (UV) photon induced decomposition of acetaldehyde adsorbed on the oxidized rutile TiO2(1 1 0) surface was studied with photon stimulated desorption (PSD) and thermal programmed desorption (TPD). Acetaldehyde desorbs molecularly from TiO2(1 1 0) with minor decomposition channels yielding butene on the reduced TiO2 surface and acetate on the oxidized TiO2 surface. Acetaldehyde adsorbed on oxidized TiO2(1 1 0) undergoes a facile thermal reaction to form a photoactive acetaldehyde–oxygen complex. UV irradiation of the acetaldehyde–oxygen complex initiated photofragmentation of the complex resulting in the ejection of methyl radical into gas phase and conversion of the surface bound fragment to formate.  相似文献   

4.
Temperature-programmed desorption (TPD) and a differential form of it, called intermittent temperature-programmed desorption (ITPD), turned out to be powerful characterising techniques for chemoresistive materials applied to gas sensing. We investigated samples of SnO2, TiO2 and solid solutions of them (TixSn1 ? xO2). TPD and ITPD experiments were carried out in vacuum, with samples previously treated in pure O2 (100 Torr, 500 °C, 30 min). Amounts of desorbed O2 corresponded for all Ti-containing samples to less than 10% of a compact monolayer of ions O2?. Corresponding values of the apparent activation energy of desorption (Eapp) were calculated directly from the Arrhenius plots for each partial TPD and ranged from about 100 to 330 kJ mol? 1 (1.16 to 3.82 eV).  相似文献   

5.
High-resolution scanning tunneling microscopy (STM) and temperature-programmed desorption (TPD) were used to study the interaction of O2 with reduced TiO2(110)–(1 × 1) crystals. STM is the technique of choice to unravel the relation between vacancy and non-vacancy assisted O2 dissociation channels as a function of temperature. It is revealed that the vacancy-assisted, first O2 dissociation channel is preferred at low temperature (~ 120 K), whereas the non-vacancy assisted, second O2 dissociation channel operates at temperatures higher than 150 K–180 K. Based on the STM results on the two dissociative O2 interaction channels and the TPD data, a new comprehensive model of the O2 chemisorption on reduced TiO2(110) is proposed. The model explains the relations between the two dissociative and the molecular O2 interaction channels. The experimental data are interpreted by considering the available charge in the near-surface region of reduced TiO2(110) crystals, the kinetics of the two O2 dissociation channels as well as the kinetics of the diffusion and reaction of Ti interstitials.  相似文献   

6.
The adsorption and reaction of glycine on the surface of a rutile TiO2(011) single crystal has been studied by X-ray Photoelectron Spectroscopy (XPS) and Temperature Programmed Desorption (TPD) techniques. Special attention was given to the formation and stability of the zwitterion structure (+NH3–CH2–COO?) in comparison to that of the dissociated structure (NH2–CH2–COO?). Both species have been observed on the surface at 300 K. The zwitterion structure was found less stable than the dissociated structure. This is in line with other experimental results related to proline on rutile TiO2(110) single crystal [13, 14], glycine on rutile TiO2(110) single crystal [17, 24] and computational results related to glycine on rutile TiO2(110) single crystal [25]. By 500 K most of the zwitterion structure has been converted to the dissociated one. TPD results indicated that glycine reacts in a similar way to carboxylic acids on this surface with the main decomposition products being ketene (CH2=C=O). Other masses left unassigned for were also observed during TPD. The most intense being m/e 55 that might be due to =CH–C(O)N=or C(O)N=CH fragments.  相似文献   

7.
John T. Yates 《Surface science》2009,603(10-12):1605-1612
Photochemistry from TiO2 surfaces is described for two cases: The UV-induced photodesorption of O2 from TiO2(1 1 0) – 1 × 1; and the hydrophilic effect caused by UV irradiation on TiO2. In both cases fundamental information about how these processes occur has been found. In the case of the O2 photodesorption kinetics, it has been found that the rate of the process is proportional to the square root of the UV flux, showing that second-order electron–hole pair recombination is dominant in governing the photodesorption rate. In addition these measurements provide an estimate of the concentration of hole traps in the TiO2 crystal. In other measurements of the UV-induced hydrophilicity, starting with the atomically-clean TiO2 surface, it has been shown that the effect occurs suddenly at a critical point during irradiation as a result of photooxidation of a monolayer of hydrocarbon (n-hexane) at equilibrium with ppm concentration of n-hexane in O2 at 1 atmosphere pressure.  相似文献   

8.
Gold clusters supported on TiO2(110) exhibit unusual activity for the oxidation of methanol to formaldehyde. Temperature programmed desorption studies of methanol on Au clusters show that both Au and titania sites are necessary for methanol reaction. Isotopic labeling experiments with CD3OH demonstrate that reaction occurs via OH bond scission to form a methoxy intermediate. When the TiO2 surface is oxidized with 18O2 before or after Au deposition, methanol reaction produces H218O below 300 K, indicating that oxygen from titania promotes OH bond scission and is incorporated into desorbing products. XPS experiments provide additional evidence that during methanol reaction on the Au/TiO2 surface, methanol adsorption occurs on TiO2, given that the titania support becomes slightly oxidized after exposure to methanol in the presence of Au clusters. While the role of TiO2 is to dissociate the OH bond and form the reactive methoxy intermediate, the role of the Au sites is to remove hydrogen from the surface as H2, thus preventing the recombination of methoxy and hydrogen to methanol. The decrease in formaldehyde yield with increasing Au coverage above 0.25 ML suggests that reaction occurs at Au–titania interfacial sites; scanning tunneling microscopy images of various Au coverages confirm that the number of interfacial sites at the perimeter of the Au clusters decreases as the Au coverage is increased between 0.25 and 5 ML.  相似文献   

9.
The Ir(111) surface is oxidized with gas-phase oxygen atoms under vacuum condition to achieve an oxidation level beyond its saturation coverage for chemisorption. Two surface oxides, rutile IrO2 of (100) domain and corundum Ir2O3 of (001) domain, have been grown at 550 K with different oxygen exposure of 3.6 × 105 L and 7.2 × 105 L respectively. The temperature programmed desorption (TPD) experiment of rutile IrO2(100) shows its desorption curve (at 4 K s? 1) peaks at 750 K, followed by a long tail of less pronounced desorption features. On the other hand, TPD of corundum Ir2O3(001) displays a symmetric trace, peaking at 880 K. Carbon monoxide titration experiments show that adsorbed CO reduces corundum Ir2O3(001) at 400 K, but CO does not adsorb on rutile IrO2(100) and no reduction reaction occurs. Evidently, among the two surface oxides, corundum Ir2O3(001) involves in catalysis of carbon monoxide oxidation, while rutile IrO2(100) does not. The formation of two surface oxides is also compared, we conclude that the atom arrangement favors Ir2O3(001) at the oxide/metal interface.  相似文献   

10.
The composition and thermodynamic stability of the (110) surface of Sn1 - xTixO2 rutile solid solutions was investigated as a function of Ti-distribution and content up to the formation of a full TiO2 surface monolayer. The bulk and (110) surface properties of Sn1 - xTixO2 were compared to that of the pure SnO2 and TiO2 crystal. A large supercell of 720 atoms and a localized basis set based on the Gaussian and plane wave scheme allowed the investigation of very low Ti-content and symmetry. For the bulk, optimization of the crystal structure confirmed that up to a Ti-content of 3.3 at.%, the lattice parameters (a, c) of SnO2 do not change. Increasing further the Ti-content decreased both lattice parameters down to those of TiO2. The surface energy of these solid solutions did not change for Ti-substitution in the bulk of up to 20 at.%. In contrast, substitution in the surface layer rapidly decreased the surface energy from 0.99 to 0.74 J/m2 with increasing Ti-content from 0 to 20 at.%. As a result, systems with Ti atoms distributed in the surface (surface enrichment) had always lower energies and thus were thermodynamically more favorable than those with Ti homogeneously distributed in the bulk. This was attributed to the lower energy necessary to break the TiO bonds than SnO bonds in the surface layer. In fact, distributing the Ti atoms homogeneously or segregated in the (110) surface led to the same surface energy indicating that restructuring of the surface bond lengths has minimal impact on thermodynamic stability of these rutile systems. As a result, a first theoretical prediction of the composition of Sn1 - xTixO2 solid solutions is proposed.  相似文献   

11.
We have studied desorption of 13CO and H2O and desorption and reaction of coadsorbed, 13CO and H2O on Au(310). From the clean surface, CO desorbs mainly in, two peaks centered near 140 and 200 K. A complete analysis of desorption spectra, yields average binding energies of 21 ± 2 and 37 ± 4 kJ/mol, respectively. Additional desorption states are observed near 95 K and 110 K. Post-adsorption of H2O displaces part of CO pre-adsorbed at step sites, but does not lead to CO oxidation or significant shifts in binding energies. However, in combination with electron irradiation, 13CO2 is formed during H2O desorption. Results suggest that electron-induced decomposition products of H2O are sheltered by hydration from direct reaction with CO.  相似文献   

12.
Nanoparticle TiO2/Ti films were prepared by a sol–gel process using Ti(OBu)4 as raw material, the as-prepared film samples were also characterized by TG-DTA, XRD, TEM, SEM, XPS, DRS, PL, SPS and EFISPS testing techniques. TiO2 nanoparticles experienced two processes of phase transition, i.e. amorphous to anatase and anatase to rutile at the calcining temperature range from 450 to 700 °C. TiO2 nanoparticles calcined at 600 °C had similar composition, structure, morphology and particle size with the internationally commercial P-25 TiO2 particles. Thus, the conclusion that 600 °C might be the most appropriate calcining temperature during the preparation process of nanoparticle TiO2/Ti film photocatalysts could be made by considering the main factors such as the properties of TiO2 nanoparticles, the adhesion of nanoparticle TiO2 film to Ti substrate, the effects of calcining temperature on Ti substrate and the surface characteristics and morphology of nanoparticle TiO2/Ti film for the practice view. The Ti element mainly existed on the nanoparticle TiO2/Ti(3) film calcined at 600 °C as the chemical state of Ti4+, while O element mainly existed as three kinds of chemical states, i.e. crystal lattice oxygen, hydroxyl oxygen and adsorbed oxygen with increasing band energy. Its photoluminescence (PL) spectra with a peak at about 380 nm could be observed using 260 nm excitation, possibly resulting from the electron transition from the bottom of conduction band to the top of valence band. The PL peak position was nearly the same as the onset of its diffuse reflection spectra (DRS) and surface photovoltage spectroscopy (SPS), demonstrating that the effects of the quantum size on optical property were greater than that of the Coulomb and surface polarization. The PL spectra with two peaks related to the anatase and rutile, respectively, could be observed using the excited wavelength of 310 nm. Weak PL spectra could be observed using the excited wavelength of 450 nm, resulting from surface states. In addition, during the experimental process of the photocatalytic degradation phenol, the photocatalytic activity of nanoparticle TiO2/Ti film with three layers calcined at 600 °C was the highest.  相似文献   

13.
Adsorption states, thermal reactions, and photoreactions at photon energies 2.3–4.7 eV of NO dimers and monomers have been compared between 8-nm silver nanoparticles (Ag NPs) formed on an Al2O3/NiAl(110) substrate and flat Ag(111) surfaces, by thermal desorption (TPD) and by photodesorption using mass selected time-of flight measurements. On the Ag NPs, the (NO)2 and NO species are bound more weakly and with broader variation of adsorption states, compared to Ag(111). For (NO)2 excitation of the Mie plasmon of the Ag NPs with p-polarized 3.5-eV photons enhances the photodesorption cross section (PCS) of NO from (NO)2 by a factor 15 compared to Ag(111); even off the plasmon resonance up to 3-fold PCS enhancement is obtained which we ascribe to hot electron confinement. However, since translational energy distributions of photodesorbed NO are roughly the same on Ag NPs and on Ag(111), common mechanisms of photoexcitation and photoreactions apply on both types of surfaces, and neither enhancement modifies the photoinduced dynamics. Stronger particle-induced influences are observed for the photoinduced NO monomer by changes in its properties, chemical environments, and formation/decay kinetics.Our results show that NPs can lead to considerable changes of efficiency and, under favorable cases, also of branching of photoinduced surface reactions.  相似文献   

14.
Temperature-programmed-desorption (TPD) spectra and isothermal desorption rates of D2 molecules from a Si(100) surface have been calculated to reproduce experimental β1, A-TPD spectra and isothermal desorption rate curves. In the diffusion-promoted-desorption (DPD) mechanism, hydrogen desorption from the Si(100) (2 × 1) surfaces takes place via D atom diffusion from doubly-occupied Si dimers (DODs) to their adjacent unoccupied Si dimers (UODs). Taking a clustering interaction among DODs into consideration, coverages θDU of desorption sites consisting of a pair of a DOD and UOD are evaluated by a Monte Carlo (MC) method. The TPD spectra for the β1, A peak are obtained by numerically integrating the desorption rate equation R = νA exp(? Ed, A / kBT)θDU, where νA is the pre-exponential factor and Ed, A is the desorption barrier. The TPD spectra calculated for Ed, A = 1. 6 eV and νA = 2.7 × 109 /s are found to be in good agreement with the experimental TPD data for a wide coverage range from 0.01 to 0.74 ML. Namely, the deviation from first-order kinetics observed in the coverage dependent TPD spectra as well as in the isothermal desorption rate curves can be reproduced by the model simulations. This success in reproducing both the experimental TPD data and the very low desorption barrier validates the proposed DPD mechanism.  相似文献   

15.
In-situ gas-injection transmission electron microscopy revealed that a pillar grew at the edge of the interface of a gold nanoparticle and a TiO2 substrate during exposure to O2 gas at 100 Pa. The pillar was found to have a titanium-deficient chemical composition of Ti1 ? xO2 (x > 0) by electron energy loss spectroscopy (EELS). The spectra showed a chemical shift of oxygen and titanium ions to have ionic states of Ti3+ and Oy? (y < 3/2). The formation of the Ti1 ? xO2 at the contact edge of gold–Ti1 ? xO2 interface is discussed from the perspective of an O2 affinity, which plays an important role in CO oxidation process of supported gold particle.  相似文献   

16.
Jens B?k Simonsen 《Surface science》2010,604(15-16):1300-1309
The interaction between 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and the rutile TiO2(110)–(1 × 1) surface under ultrahigh vacuum (UHV) conditions was investigated using X-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and density functional theory (DFT) calculations. The NEXAFS results showed that HHTP molecules formed a submonolayer and a monolayer that aligned along the [001]-direction with, respectively, a more or less flat downward orientation and a more upright orientation to the TiO2 surface. The HHTP molecules that aligned along the [001]-direction were most likely grafted onto the TiO2(110) surface by a bidentate bridge between each of the oxygen atoms of one of the catechol units within the HHTP molecule and two adjacent Ti(5f)4+ ions on the TiO2(110) surface. The coordination is non-dissociative in the case of the submonolayer, but dissociative in the monolayer, according to the analysis of the C1s XPS, UPS, C1s NEXAFS data and complementary DFT calculations.  相似文献   

17.
《Surface science》2003,470(1-2):27-44
Reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to investigate the effect of pre-dosed O atoms on the adsorption of NO on Pt{2 1 1} at room temperature. RAIRS experiments show that no new species are formed when NO is adsorbed onto a Pt{2 1 1} surface that has been pre-dosed with oxygen and no species are lost from the spectra, compared to spectra recorded for NO adsorption on the clean Pt{2 1 1} surface. However pre-dosed oxygen atoms do influence the frequency and intensity of several of the observed infrared bands. In stark contrast, pre-dosed O has a large effect on the TPD spectra. In particular N2 and N2O desorption, seen following NO adsorption on the clean Pt{2 1 1} surface, is completely inhibited. This effect has been assigned to the blocking of NO dissociation by the pre-adsorbed O atoms. A new NO desorption peak, not seen for NO adsorption on the clean Pt{2 1 1} surface, is also observed in TPD spectra recorded following NO adsorption on an oxygen pre-dosed Pt{2 1 1} surface.  相似文献   

18.
Michael A. Henderson 《Surface science》2010,604(17-18):1502-1508
The chemistry of Cr(CO)6 on the Fe3O4(111) surface termination of α-Fe2O3(0001) was explored using temperature programmed desorption (TPD), Auger electron spectroscopy (AES), static secondary ion mass spectrometry (SSIMS) and low energy electron diffraction (LEED) both with and without activation from an oxygen plasma source. No thermal decomposition of Cr(CO)6 was detected on the surface in the absence of O2 plasma treatment, with first layer molecules desorbing in TPD at 215 K from a close-packed overlayer. The interaction of first layer Cr(CO)6 with the Fe3O4(111)-termination was weak, desorbing only ~ 30 K above the leading edge of the multilayer state. Activation of multilayer coverages of Cr(CO)6 with the O2 plasma source at 100 K resulted in complete conversion of the outer Cr(CO)6 layers, presumably to a disordered Cr oxide film, with Cr(CO)6 molecules near the surface left unaffected. Absence of CO or CO2 desorption states suggests that all carbonyl ligands are liberated for each Cr(CO)6 molecule activated by the plasma. AES and SSIMS both show that O2 plasma activation of Cr(CO)6 results in a carbon-free surface (after desorption of unreacted Cr(CO)6). LEED, however, shows that the Cr oxide film was disordered at 600 K and likely O-terminated based on subsequent water TPD. Attempts to order the film at temperatures above 650 K resulted in dissolution of Cr into the α-Fe2O3(0001) crystal based on SSIMS, an observation linked to the Fe3O4(111) termination of the surface and not to the properties of α-Cr2O3/α-Fe2O3 corundum interface. Nevertheless, this study shows that O2 plasma activation of Cr(CO)6 is an effective means of depositing Cr oxide films on surfaces without accompanying carbon contamination.  相似文献   

19.
The adsorption and desorption of butanethiol (CH3(CH2)3SH: C4), hexanethiol (CH3(CH2)5SH: C6) and octanethiol (CH3(CH2)7SH: C8) on Au (1 1 1) under vacuum condition have been studied by temperature programmed desorption (TPD). Desorptions of thiolate radical species were observed for C6 and C8. Connecting the desorption temperatures of parent thiols from the first layer and that of hydrogen, we were able to find a condition for thiolate radicals to be desorbed from the surface.  相似文献   

20.
Hydrogen atoms on solid surfaces were measured directly by elastic recoil detection analysis (ERDA) using medium energy (100–150 keV) Ne+ ions with an excellent sensitivity of (~ 1 × 1012 H/cm2) without any absorber foils and time-of-flight techniques. An electrostatic toroidal analyzer acquired H+ ions with energy around 11 keV recoiled from Si(111)-1 × 1-H surfaces. The H+ fraction strongly depends upon emerging angle and takes a value more than 50% at the angle below 70° and a saturated value of 17% at the angle above 80° with respect to surface normal. We detected H atoms on the reduced TiO2(110) exposed to water molecules at room temperature (2 L) and estimated the absolute amount of H to be ~ 2.0 × 1014 H/cm2 corresponding to ~ 38% (~ 0.38 ML) of the bridging oxygen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号