首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
纺织品纤维成分的快速检测对其生产过程质量监控、贸易和市场监督均具有重要的意义。利用近红外光谱技术联合变量优选对棉麻混纺织物中的棉含量进行快速检测研究。采用NIRFlex N-500型傅里叶近红外光谱仪在4 000~10 000 cm-1光谱范围内采集样本的反射光谱,对样本光谱进行范围初选和预处理分析。在此基础上,利用UVE(uninformative variables elimination),SPA(successive projections algorithm)及CARS (competitive adaptive reweighted sampling)方法对光谱变量进行优选,再应用PLS(partial least squares)建立棉麻混纺织物中的棉含量预测模型。最后,采用最优预测模型对未参与建模的样本进行预测。研究结果表明,4 052~8 000 cm-1光谱范围为棉含量较优的建模光谱范围。CARS变量选择方法能较为有效地提高预测模型的精度,CARS-PLS模型的校正集、预测集相关系数和均方根误差分别为0.903,0.749和8.01%,12.93%。因此,近红外光谱联合CARS变量优选可以用于棉麻混纺织物棉含量的快速检测,CARS方法可以有效简化预测模型,提高预测模型性能。  相似文献   

2.
可溶性固形物(SSC)是脐橙重要内部品质之一。采用QualitySpec型光谱仪在350~1000 nm波段范围采集脐橙的可见/近红外漫透射光谱,采用CARS(competitive adaptive reweighted sampling)变量选择方法筛选出与脐橙SSC相关的重要变量,并与无信息变量消除(UVE)及连续投影算法(SPA)比较。最后,对选择的38个重要波长变量应用偏最小二乘(PLS)回归建立脐橙SSC预测模型,并对未参与建模的75个样品进行预测。研究结果表明,CARS方法优于UVE及SPA变量选择方法,能有效地筛选出重要波长变量。CARS-PLS建立的SSC预测模型优于全光谱的PLS模型,其校正集及预测集的相关系数分别为0.948和0.917,均方根误差分别为0.347%和0.394%。因此,可见/近红外漫透射光谱结合CARS方法可以预测脐橙可溶性固形物,CARS变量选择方法能有效简化预测模型和提高模型的预测精度。  相似文献   

3.
可见/近红外联合UVE-PLS-LDA鉴别压榨和浸出山茶油   总被引:1,自引:0,他引:1  
山茶油是我国特有的优质食用油,而压榨山茶油营养品质优于浸出山茶油。采用可见/近红外光谱技术对压榨和浸出山茶油进行鉴别研究。在350~1 800 nm波段范围内采集压榨和浸出山茶油样本的透射光谱,利用无信息变量消除(UVE)方法进行波长变量优选,剔除无用波长变量,并应用偏最小二乘-线性判别分析(PLS-LDA)建立鉴别分类模型。最后,利用鉴别分类模型对未参与建模的26个预测集样本进行鉴别。研究结果表明,UVE-PLS-LDA是一种有效的鉴别分类方法,所建立的鉴别分类模型能较好地对压榨和浸出山茶油进行鉴别,校正集和预测集样本的鉴别正确率均为100%。因此,可见/近红外光谱联合UVE-PLS-LDA方法鉴别压榨和浸出山茶油是可行的。  相似文献   

4.
采用可见-近红外高光谱成像技术结合化学计量学方法检测灵武长枣维生素C(VC)含量,探究一种全新的水果内部成分的快速无损检测方法。采用高效液相色谱法(HPLC)测得长枣的VC含量化学值,可见-近红外高光谱成像系统采集164个灵武长枣400~1 000 nm的高光谱图像,利用ENVI4.8软件提取图像的感兴趣区域(region of interest,ROI),计算其平均光谱,获得光谱值,将化学值与光谱值通过The UnsecramblerX 10.4软件建立模型。利用蒙特卡洛交叉验证法剔除异常值,采用光谱理化值共生距离法(sample set partitioning based on joint x-y distance,SPXY)进行样本划分以提高模型的预测性能;对光谱采用移动平滑(moving average)、中值滤波(median filter)、归一化(normalize)、基线校准(baseline)、多元散射校正(multiple scattering correction,MSC)、去趋势(detrending)和标准正态变量变换(standard normal variate,SNV)等7种方法进行预处理;为进一步减少数据量,降低维度,提高运算速度,使用竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)、无信息变量消除算法(uninformative variable elimination ,UVE)和连续投影算法(successive projections algorithm,SPA)提取特征波长,以期实现以少数波段代替全波段;将全波段光谱(full spectrum,FS)以及CARS, UVE和SPA三种方法提取的特征波长分别建立偏最小二乘(partial least squares wavelength regression,PLSR)和支持向量机(support vector machine,SVM)模型,从而确定最优的建模模型。利用蒙特卡洛交叉验证法共剔除7个异常样本,采用SPXY法将剔除异常样本后的157个数据区分为校正集和预测集,校正集中样本个数为117,预测集中样本个数为40。将未经光谱预处理的建模结果与分别经过七种光谱预处理的建模结果相比,选择未经光谱预处理的数据进行后续分析;将未经光谱预处理的光谱值采用CARS,UVE,SPA方法进行提取特征波长,CARS共优选出406,415,487,631,636,655,660,665,670,684,689,694,723,732,747和881 nm下的光谱变量16个,利用CARS提取出的特征波长占总波长的12.8%;UVE共优选出406,415,627,631,636,651,655,660,665,670,675,679,684,689,694,699,703,708,742,747,751,756,761,766,771,775,780,785,790,795,919和924 nm下的32个特征波长,利用UVE提取出的特征波长占总波长的25.6%;SPA共优选出401,665,684 nm三个特征波长,利用SPA提取出的特征波长占总波长的2.4%。将全波段光谱与提取出的特征波长建立PLSR模型和SVM模型,对比模型结果显示UVE-SVM模型最优,其R2c为0.847 1,R2p为0.714 9,说明UVE有效地对光谱进行降维,简化了数据处理过程。本研究对高光谱成像技术在水果领域的应用进行了有益探索,探究了一种全新的灵武长枣VC含量的无损检测方法,相应建立的可见-近红外高光谱模型为其他水果成分的快速检测提供了理论基础。  相似文献   

5.
利用近红外光谱技术对食用植物油中的腐霉利进行定性检测研究。以国家标准规定的腐霉利最大残留限量为界线,将不同腐霉利含量的食用植物油样本分为合格组和不合格组。采用QualitySpec台式近红外光谱仪采集两类样本的光谱,利用无信息变量消除 (UVE)和子窗口重排分析(SPA)方法进行波长变量筛选,并应用线性判别分析(LDA)、偏最小二乘-线性判别分析(PLS-LDA)及判别偏最小二乘(DPLS)方法建立两类样本的分类模型。结果表明,近红外光谱技术可以对两类样本进行分类。UVE方法可以有效筛选有用波长变量,提高分类模型的性能。UVE-DPLS所建立的分类模型性能最优,其预测集样本的分类正确率、灵敏度及特异性分别为98.7%,95.0%和100.0%。  相似文献   

6.
采用光谱技术对水果进行定量或定性分析,如何获得一个简单、有效的校正模型对后续模型的应用和维护都非常关键。以草莓内部品质近红外光谱预测为例,从关键变量和特征样本优选两方面进行研究。采用竞争性自适应重加权CARS算法对光谱变量进行初次选择,随后采用连续投影算法SPA对校正集样本进行优选,获得98个特征样本,针对优选后的变量/样本子集利用SPA算法作二次关键变量提取,获得25个关键变量。为了验证CARS算法的性能,蒙特卡罗无信息变量消除MC-UVE和连续投影算法SPA用于比较研究。CARS算法在消除无信息变量的同时可以对共线性信息进行去除。同样,为了评估SPA算法在特征样本选择中的性能,经典的Kennard-Stone算法也用于比较分析。SPA算法能够用于校正集特征样本的优选。针对最终优选后的变量/样本(25/98)子集建立PLS和MLR模型对草莓内部可溶性固形物含量SSC含量进行定量预测。结果表明,两个模型利用原始变量/样本的0.59%/65.33%的信息均能够获得比基于原始变量/样本所建模型更好的性能,且MLR模型比PLS模型性能略优,r2pre,RMSEP和RPD分别为0.909 7,0.348 4和3.327 8。  相似文献   

7.
基于高光谱技术的土壤水分无损检测   总被引:2,自引:0,他引:2  
利用高光谱成像仪(光谱范围400~1 000 nm)对土壤含水率进行了无损检测。比较了208个土样不同天数下土壤含水率与光谱变化、不同质量含水量光谱的差异;对比分析了不同光谱预处理方法、不同方法提取特征波长、采用多元线性回归(multiple linear regression,MLR)、主成分回归(principal component regression,PCR)与偏最小二乘回归(partial least squares regression,PLSR)建模,优选出最佳模型。结果表明:光谱曲线的反射率随着土壤含水率的增加而减小。当超过田间持水率时,光谱曲线的反射率会随着土壤含水率的增加而增大。对比分析了不同预处理方法,近红外波段优选出单位向量归一化预处理方法。采用无信息变量消除法(UVE)、竞争自适应加权采样(CARS)、β系数法、连续投影算法(SPA)方法提取特征波长为49,30,5和7。为了减少数据冗余,对UVE与CARS提取的特征波长进一步采用SPA方法进行特征提取,UVE+SPA,CARS+SPA提取特征波长数分别为5和8个。在此基础上,利用MLR,PCR和PLSR方法对400~1 000 nm范围的特征波长建立模型,对比分析不同建模效果,优选出β系数提取的特征波长的MLR模型。最优的特征波长为411,440,622,713和790 nm,最优模型的预测相关系数Rp=0.979,预测均方根误差RMSEP为0.763。因此,今后可采用不同波段对土壤含水率进行定量分析。  相似文献   

8.
西瓜可溶性固形物含量的无损检测对提升其内部品质十分重要。为实现近红外光谱对小型西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对预测模型的影响,以“京秀”西瓜为研究对象,分别采集赤道、瓜脐和瓜梗三部位的漫透射光谱信息,利用偏最小二乘算法(PLS)建立并比较单一检测部位和混合所有检测部位的西瓜可溶性固形物近红外光谱预测模型,并分别采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对西瓜可溶性固形物近红外光谱变量进行特征波长筛选。结果显示,相比于单一检测部位的模型,混合所有检测部位的校正集样本建立的模型取得了较优的预测结果。同时,利用CARS算法筛选的42个特征波长变量建模,对三种检测部位预测集样本的预测结果分别为赤道RP=0.892和RMSEP= 0.684 °Brix,瓜脐RP=0.905和RMSEP= 0.629 °Brix,瓜梗RP=0.899和RMSEP= 0.721 °Brix。模型得到了很大的简化,且预测精度较高。比较发现,利用SPA算法筛选的19个特征波长变量所建模型的预测精度较低。利用三种检测部位的西瓜样本建立的PLS混合预测模型,结合CARS算法进行有效特征波长变量筛选,可提高西瓜可溶性固形物预测模型的精度,实现西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对近红外光谱预测模型的影响。结果为今后开发便携式设备检测西瓜表面各部位可溶性固形含量提供参考依据。  相似文献   

9.
利用近红外光谱技术结合组合区间偏最小二乘(SiPLS)、竞争性自适应重加权(CARS)、连续投影算法(SPA)、无信息变量消除(UVE)特征提取方法,运用深度信念网络(DBN)建立蓝莓糖度的通用检测模型,实现蓝莓糖度在线无损快速检测。采集了“蓝丰”和“瑞卡”共280个蓝莓样本的近红外光谱,采用手持折光仪测定其糖度;首先利用联合X-Y的异常样本识别方法(ODXY)检测到蓝丰和瑞卡蓝莓分别有2个和4个样本呈现异常,剔除该6个异常样本,对其余274个样本利用光谱-理化值共生距离算法(SPXY)以3∶1的比例划分出训练集和测试集;其次,对比分析卷积平滑(S-G平滑)、中心化、多元散射校正等预处理对蓝莓原始光谱的改善效果,运用SiPLS对光谱降维,筛选特征波段,利用CARS,UVE和SPA方法对特征波段进行二次筛选,以最优的特征波长建立DBN和偏最小二乘回归(PLSR)模型。结果表明,蓝莓糖度近红外检测模型的最优预处理方法为S-G平滑,SiPLS方法挑选的蓝莓糖度最优波段为593~765和1 458~1 630 nm,UVE算法从SiPLS筛选的346个变量中优选出159个最佳波长。建立蓝莓糖度DBN模型时,分析了不同隐含层数对检测模型的影响,并以交互验证均方根误差(RMSECV)作为适应度函数,利用粒子群算法(PSO)对各隐含层神经元个数在[1,100]之间寻优,发现隐含层为3层且隐含层节点数为67-43-25时,DBN模型的RMSECV达到最小,为0.397 7。无论是以全光谱还是特征波长建模,蓝莓糖度近红外DBN模型均优于常规PLSR方法;尤其以UVE方法二次筛选的特征波长建立的模型大大减少了建模变量,且模型精度更高,蓝莓糖度最优的PLSR模型测试集相关系数(RP)为0.887 5,均方根误差(RMSEP)为0.395 9,最优DBN模型RP为0.954 2,RMSEP为0.310 5。研究表明,利用SiPLS-UVE进行特征提取,结合深度信念网络方法建立的蓝莓糖度检测模型可以更好地完成蓝莓糖度在线精准分析,该方法有望应用于蓝莓及其他果蔬内部品质检测。  相似文献   

10.
为了提高对蓝莓果渣的开发利用,探索了近红外光谱测定三种蓝莓(北陆、蓝美1号、灿烂)果渣中花色苷含量的可行性。通过DA7200采集三种蓝莓果渣的近红外光谱,利用PCA-MD对北陆、蓝美1号、灿烂果渣分别剔除1, 4和8个异常样本。运用K-S划分样本集得到校正集(686个样本)和验证集(171个样本)。对样本集分别进行归一化、变量标准化(SNV)、多元散射校正(MSC)、 Norris一阶导数(NFD)、 Norris二阶导数(NSD)、 SG卷积一阶导数(SGCFD)、 SG卷积二阶导数(SGCSD)、 Savitzky-Golay(SG)卷积平滑、正交信号校正预处理,并建立相应全谱PLS模型。比较并选择MSC、 SGCSD、 SG卷积平滑、正交信号校正,进行预处理方法顺序组合的比较,结果显示,全谱PLS模型中最优预处理方法为正交信号校正+SGCSD+SG卷积平滑,其R■为0.940 0、R■为0.886 7、 RMSEC为0.722 5、 RMSECV为0.246 2、 RMSEP为1.000 5、 RPD为2.970 8。利用SPA和CARS对预处理过的光谱数据分别进行波长变量的筛选,依次建立PLS回归模型,并定量分析其对蓝莓果渣花色苷的预测能力。在所有预处理方法进行波长变量筛选中, SPA与CARS算法均可以有效地筛选出波长变量,但SPA筛选出的波长变量,无法全部建立PLS回归模型,而CARS算法筛选出的波长变量,均可建立PLS回归模型。数据表明, CARS-PLS最佳组合为正交信号校正+MSC+SG卷积平滑+SGCSD,选择波长数为25个,相较于原始光谱,其R■从0.900 8增长到0.940 3,R■从0.881 8增长到0.885 7, RMSEC从0.929 1减少到0.720 9, RMSECV从0.317 6减少到0.245 6, RMSEP从1.021 8减少到1.004 9, RPD从2.908 8增长到2.957 5。近红外光谱的蓝莓果渣花色苷含量测定中,正交信号校正表现出强大的去噪效果, CARS算法具有简化模型、适用性较好和预测精度较高等优点。研究结果表明,应用近红外光谱技术可以较好地实现三种不同品种蓝莓果渣中花色苷含量的测定,可为蓝莓果渣品质分级提供一种快速、支持大样本量的检测方法。  相似文献   

11.
为提高生鲜羊肉储存期内(4,8和20 ℃环境)挥发性盐基氮(TVB-N)的近红外光谱(NIR)检测的稳定性和准确性,选取特征光谱和预测模型是关键步骤。以121个羊肉样品为实验对象,采集生鲜羊肉680~2 600 nm波段的近红外光谱。以多元散射校正(MSC)、标准正态变换(SNV)等散射校正方法,Savitzky-Golay卷积平滑(SGS)、移动平均平滑(MAS)等平滑处理方法,以及归一化(Normalization)、中心化(Centering)、标准化(Autoscaling)等尺度缩放方法分别预处理光谱数据后建立偏最小二乘法(PLS)预测模型。比较发现SGS处理的光谱建模效果最好。利用蒙特卡洛采样(MCS)法及马氏距离法(MD)消除了羊肉光谱的5个异常数据。运用光谱-理化值共生距离(SPXY)算法划分总样本的75%(87个)为校正集样本,剩余29个为验证集样本,利用竞争性自适应重加权法(CARS)、无信息变量消除法(UVE)、改进的无信息变量消除法(IUVE)和连续投影算法(SPA)提取特征光谱得到的波长个数分别为14,713,144和15。将全光谱和4种方法提取的特征波长作为输入变量建立预测模型,CARS提取的波长所建立模型的性能优于UVE、IUVE和SPA提取的波长所建立模型的性能,表明CARS方法可以有效简化输入变量并提高预测模型的性能。改进后得到的IUVE法相比于UVE法,筛选出的波长数更少且模型性能有所提升。以提取的特征波长建立PLS,支持向量机(SVM)和最小二乘支持向量机(LS-SVM)预测模型,SVM模型得到最优的校正集预测结果,其中CARS-SVM预测模型的校正决定系数(R2C)和校正均方根误差(RMSEC)分别为0.939 1和1.426 7,最优的验证集预测效果为LS-SVM预测模型得到,其中IUVE-LS-SVM预测模型的验证决定系数(R2V)和验证均方根误差(RMSEV)分别为0.856 8和1.886 2。基于近红外特征光谱建立简化、优化的生鲜羊肉储存期TVB-N预测模型,为实现快速无损检测生鲜羊肉中的TVB-N浓度提供技术支持。  相似文献   

12.
近红外光谱分析技术对检测样品无损伤且检测速度快、精度高,因此被广泛应用在了药品检测、石油化工等领域,尤其近年来机器学习和深度学习建模方法的深入应用使其具备了更准确的检测性能。然而,样品的近红外光谱数据具有比较高的维度且存在谱间重合、共线性和噪声等问题,对近红外光谱模型的性能产生消极影响,此时样品有效特征波长的筛选极为重要。为了提高近红外光谱定量和定性分析模型的准确性和可靠性,提出了一种近红外光谱变量选择方法,其结合了最小角回归(LAR)和竞争性自适应重加权采样(CARS)的优点,具有更优的性能。该方法利用LAR初步筛选样品全谱区的特征波长,接着利用CARS对筛选出来的特征波长进一步选择,从而有效去除无关特征波长。为验证该方法的有效性,从定量和定性分析两个方面评价该方法。在定量分析实验中,以FULL,LAR,CARS,SPA和UVE作为对比方法,以药品样品数据集为实例建立PLS回归分析模型,经LAR-CARS筛选出的变量建立的PLS模型在药品数据集表现出较高的预测决定系数和较低的预测标准偏差。在定性分析实验中,以SVM,ELM,SWELM和BP作为对比方法、不同比例训练集的药品数据集为实例建立分类模型,经LAR-CARS筛选出的变量建立的SVM分类模型精度最高达100%。从实验结果可见,LAR-CARS可有效的筛选出表征样品特征的波长,利用其筛选出的波长建立的定量、定性分析模型具有更好的鲁棒性,可用于样品光谱的特征波长筛选。  相似文献   

13.
利用可见-近红外光谱技术联合变量选择新方法对南丰蜜桔的可溶性固形物(SSC)进行快速无损检测研究,以简化南丰蜜桔SSC预测模型和提高预测模型性能。试验共采用300个南丰蜜桔样本,校正集、验证集及预测集样本分别为150,75和75个。采用QualitySpec型光谱仪在350~1 000 nm波段范围内采集样本光谱,利用无信息变量消除(UVE)剔除无用信息波长变量,再采用独立成分分析(ICA)提取光谱的独立成分,最后应用最小二乘支持向量机(LS-SVM)建立南丰蜜桔的SSC预测模型,并利用未参与建模的预测集样本对模型进行评价。研究结果表明,可见-近红外光谱技术联合UVE-ICA- LS-SVM对南丰蜜桔的SSC检测精度高。UVE-ICA可以有效剔除无用信息波长变量,提取特征光谱信息,简化预测模型及提高预测模型性能。UVE-ICA- LS-SVM所建立的南丰蜜桔SSC预测模型性能优于PLS,PCA-LS-SVM及ICA-LS-SVM预测模型,其校正集、验证集及预测集的决定系数和均方根误差分别为0.978,0.230%,0.965,0.301%及0.967,0.292%。  相似文献   

14.
由于高光谱数据量大、维数高,光谱噪声明显、散射严重等特征导致光谱建模时关键变量提取较为困难,同时,高光谱图像的获取会受非单色光、杂散光、温度等多种因素的影响,从而使高光谱数据与待测性质之间有一定非线性关系。为此,提出采用正自适应加权算法(CARS)对可见-近红外高光谱高维数据进行关键变量筛选,并与全光谱和经典变量提取方法SPA,MC-UVE,GA和GA-SPA方法进行比较。以200个库尔勒香梨为研究对象,采用SPXY方法将样本划分为校正集和预测集,校正集和预测集分别包含150个和50个样本。基于不同方法筛选的变量,分别建立线性PLS模型及非线性LS-SVM模型,r2,RMSEP和RPD用于模型性能的评估。综合比较发现,GA,GA-SPA和CARS变量筛选方法能够有效地筛选出原始高光谱数据中具有强信息且对外界影响因素不敏感的变量,适用于高光谱数据关键变量的提取,其中CARS变量筛选效果最佳,基于CARS获取的关键变量构建的非线性LS-SVM库尔勒香梨SSC含量预测模型获得了最优的预测结果,r2pre,RMSEP和RPD分别为0.851 2,0.291 3和2.592 4。研究表明,CARS方法是一种有效的高光谱关键变量筛选方法,利用高光谱数据,非线性LS-SVM模型比线性PLS模型更适合于香梨品质的定量预测。  相似文献   

15.
山茶油素有"东方橄榄油"美誉,实现掺假山茶油的鉴别具有重要实用价值,采用近红外光谱技术对掺有葵花油的山茶油进行检测。分别以1%,5%,10%为梯度制备掺假比例不同的山茶油样品,并根据掺假比例将其分为A组(0%~5%)和B组(6%~10%)共11个样品,C组(15%~40%)6个和D组(50%~100%)6个样品。将每个掺假样品充分混匀后再分为9份,依次采集其1 000~2 500nm范围的吸收光谱,共获得207条光谱曲线。每组样品的光谱数据按2∶1随机分为训练集与验证集。经去除首尾噪声后,通过主成分分析法(principal component analysis,PCA)降维,并利用前四个主成分建立了鉴别山茶油不同掺假等级的主成分-支持向量机判别模型,训练集与验证集的总体判别准确率分别达96.38%和94.20%;进一步,通过对前四个主成分的载荷系数的分析,并结合原始光谱,提取建模过程中权重较大的波长并解析其化学含义,最终确定出五个特征波长:1 212,1 705,1 826,1 905及2 148nm,以此波长重新建立近红外特征光谱山茶油掺假等级判别模型,对训练集与验证集的总体判别准确率也达到了94.20%和92.75%。研究结果表明,利用近红外光谱和特征光谱均能够较好实现山茶油掺假等级的鉴别,同时所建立的近红外特征光谱模型也为设计相应的掺假山茶油实用便携式检测仪器提供了理论基础。  相似文献   

16.
本文研究基于可见/近红外透射光谱技术的红提糖度和含水率的无损检测方法。采集360个红提样本,并分别利用标准正态变量变换(Standard Normal Variable transformation,SNV)、SavitZky-Golay卷积平滑处理法(SavitZky-Golay,S_G)等光谱预处理方法处理后的数据建立PLSR模型,分别采用一次降维(GA、SPA、CARS、UVE)和二次降维组合(CARS-SPA、UVE-SPA、GA-SPA)7种数据降维方法对光谱进行特征变量提取,分别建立红提糖度和含水率的偏最小二乘回归算法(Partial Least Squares Regression,PLSR)和最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)含量检测模型并对比分析模型的优劣。结果表明:红提糖度和含水率的最优PLSR模型波长提取方法为GA-SPAPLSR,最优模型的预测集相关系数分别为0.958、0.938;红提糖度和含水率的最优LSSVM模型波长提取方法分别为CARS-SPA-LSSVM、UVE-SPA-LSSVM,最优模型的预测集相关系数分别为0.969、0.942;LSSVM所建模型的效果好于PLSR所建模型,但模型的运算时间较长。研究结果表明:基于可见/近红外技术无损检测红提糖度和含水率的方法可行,两种最优检测模型的预测精度均较高,都能满足检测要求。在不同应用下,可酌情选择不同模型,PLSR所建最优模型的运算时间较短,适合在线快速检测;LSSVM的检测性能最佳,可更加准确地检测红提糖度和含水率。  相似文献   

17.
研究了基于可见-近红外光谱技术的发动机润滑油含水量快速检测方法。在获取光谱信息的基础上,提出了采用不同的光谱建模方法以提高检测精度和简化分析计算。分别采用主成分分析(PCA)和连续投影算法(SPA)方法进行模型输入变量的提取。SPA最终选择了476,483,544,925,933,938,952,970和974nm共9个波长为最优变量。基于SPA选择的变量,分别应用偏最小二乘回归(PLSR)和多元线性回归(MLR)建模。效果均优于全波段PLSR模型和PCA-PLSR模型。说明SPA选择的有效变量能够包含最重要的全波段光谱信息,同时可以去除无用的信息变量。为了进一步提高检测效果,采用LS-SVM分别基于SPA选择后的有效变量和全波段光谱进行建模。两个模型的预测确定系数(Rp2)均在0.9以上。SPA-LS-SVM的效果要优于全波段LS-SVM模型的效果。SPA-LS-SVM模型的Rp2达到了0.983,剩余预测偏差(RPD)值为6.963。表明可见-近红外光谱可以用于发动机润滑油含水量的检测。  相似文献   

18.
采用高光谱成像技术对鱼新鲜度进行检测研究。首先,提取鱼样本感兴趣区域(region of interest, ROI)光谱,分别采用竞争性自适应重加权算法(CARS),连续投影算法(SPA)和遗传算法(GA)提取特征波长,三种算法分别得到57,31和66个特征变量,采用最小二乘支持向量机和SIMCA作为分类模型,将57,31和66个特征变量作为LS-SVM和SIMCA模型的输入变量建立分类模型,基于SPA-LS-SVM和CARS-LS-SVM模型预测集识别率分别达到了98%和96%,而采用SIMCA建立的模型取得了较差的预测结果,GA-SIMCA, SPA-SIMCA和CARS-SIMCA模型预测集识别率都只是达到了52%。结果表明,LS-SVM作为分类模型优于SIMCA模型,SPA和CARS选择的特征波长,不但可以简化模型,还可以提高模型的预测精度,采用高光谱成像技术可以有效检测鱼的新鲜度,并能准确检测出鱼不同冻融次数和冷冻时间。  相似文献   

19.
牛肉丸是一种口感独特的肉类深加工食品。不法商贩为了谋取利益,在牛肉中掺入猪肉、鸡肉等廉价肉制作肉丸冒充纯牛肉丸售卖。传统的肉品掺假检测方法费时费力,成本高昂。高光谱成像技术具有快速无损、低成本等优点,因此对牛肉丸中掺假猪肉和鸡肉进行高光谱成像检测。首先分别制作纯牛肉丸和混有掺假肉猪肉和鸡肉的牛肉丸,掺假肉占原料肉质量比例分别为5%, 10%, 15%, 20%, 25%。采集所有肉丸样本的高光谱信息并提取光谱数据。分别采用1~(st) Der, 2~(nd) Der, MC, MSC, SG和SNVT六种预处理方法对所提取光谱进行预处理,建立全波段下偏最小二乘(PLS)掺假含量预测模型,并比较模型预测效果得出最佳预处理方法。对最佳预处理方法处理后的光谱数据进行特征波长的筛选,筛选方法有:连续投影法(SPA)、竞争性自适应重加权算法(CARS)、联合区间偏最小二乘法(siPLS),并创新性地联用siPLS与CARS的联合区间偏最小二乘-竞争性自适应重加权算法(siPLS-CARS)。最后比较不同波长筛选方法下的模型预测效果。研究表明,牛肉丸掺猪肉和鸡肉PLS预测模型最佳预处理方法分别为MSC和1~(st) Der。SPA, CARS和siPLS-CARS分别筛选了掺猪肉样品光谱中的13, 51和32个特征波长, siPLS将全光谱分为14个子区间,联合第1, 3, 7, 13子区间进行建模,其中CARS筛选波长后的PLS预测模型效果最好,R_C和R_P分别为0.981 4和0.972 1, RMSECV和RMSEP分别为0.016 3和0.020 3。SPA, CARS和siPLS-CARS分别筛选了掺鸡肉光谱中的15, 61和28个特征波长, siPLS将全光谱分为15个子区间,联合第7, 8, 11, 12子区间进行建模,最佳波长筛选方法也是CARS,此时PLS预测模型R_C和R_P分别为0.990 2和0.987 8, RMSECV和RMSEP分别为0.012 3和0.012 6。siPLS-CARS相比于siPLS不仅缩减了特征波长数量,且提高了模型预测的精度;相比于CARS筛选出的波长更少,但精度略低。掺鸡肉样品预测模型效果整体优于掺猪肉样品。研究结果表明高光谱成像技术可以实现牛肉丸中掺假的含量预测,为牛肉丸掺假快速检测提供理论基础。  相似文献   

20.
对掺入不同含量大豆油和菜籽油的鱼油进行鱼油掺假含量的可见-近红外光谱(Vis-NIR)研究。向3个不同品牌鱼油中分别掺入不同比例的大豆油,另外3个不同品牌中分别掺入不同比例的菜籽油,共获得300个样本。对所采集样本的光谱数据分别采用原始光谱,以及平滑,变量标准化(SNV),多元散射校正(MSC),一阶求导和二阶求导等预处理算法进行处理后,建立偏最小二乘回归(PLSR)模型。基于全波段光谱的鱼油中大豆油和菜籽油掺假含量预测的最优模型分别为全波段PLSR模型和MSC-PLSR模型,其预测相关系数(Rp)分别达到0.938 6和0.959 3。进一步采用连续投影算法(SPA)分析鱼油中大豆油和菜籽油掺假样品的光谱,并分别获得了11个和15个光谱特征波长变量。基于特征变量的PLSR模型的Rp分别为0.941 2和0.932 6。试验研究表明, 可以采用Vis-NIR技术实现对鱼油掺假物含量的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号