首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 137 毫秒
1.
蔡利兵  王建国  朱湘琴 《物理学报》2011,60(8):85101-085101
通过粒子模拟方法,实现了强直流场下介质表面击穿过程中次级电子倍增效应的数值模拟.具体研究了强直流场场强、介质表面光滑度和次级电子产生率等对次级电子倍增的影响,以及倾斜直流场和外加磁场对次级电子倍增的抑制.结果表明,选择次级电子产生率较低的介质材料和倾斜强直流场可以有效降低次级电子倍增效应的强度,而外加磁场必须超过一定值时才可以有效降低次级电子倍增强度. 关键词: 次级电子倍增 强直流场 介质表面击穿 数值模拟  相似文献   

2.
李爽  常超  王建国  刘彦升  朱梦  郭乐田  谢佳玲 《物理学报》2015,64(13):137701-137701
在介质加载加速器结构(DLA)内, 提出采用刻槽结构结合外加磁场的方法用于在电磁场横磁(TM)模式下抑制介质表面的电子倍增. 通过理论分析和数值模拟, 比较了刻槽结构和纵向磁场对斜面上电子碰撞能量和渡越时间的影响, 得到了在介质表面同时存在法向RF电场及切向RF电场时, 采用刻槽结构并施加一定的纵向磁场强度, 可有效抑制二次电子倍增的发展, 提高介质面的击穿阈值.  相似文献   

3.
 针对介质单边二次电子倍增现象,理论分析给出了其动力学方程、二次电子初始能量与角度分布,结合二次电子发射的材料特性,研究了二次电子倍增的理论预估敏感区间。利用蒙特卡罗方法抽样选取电子初始发射能量和角度,数值研究了二次电子倍增的敏感区间,并与理论结果进行了比对,给出了二次电子数目随时间的增长关系;采用固定时间步长并考虑电子束动态加载饱和效应的细致蒙特卡罗方法,研究了二次电子数目、直流场、射频场、介质表面沉积功率、电子放电功率、二次电子碰撞能量及电子渡越时间等二次电子倍增特性物理量的变化过程,并且讨论了初始电流及二次电子倍增工作点对二次电子倍增整个过程的影响作用,得出了二次电子倍增存在初始阈值发射电流密度的结论。  相似文献   

4.
董烨  刘庆想  李相强  周海京  董志伟 《强激光与粒子束》2018,30(3):033001-1-033001-9
提出了一种可由脉冲功率驱动的新型二次电子倍增阴极构型,并对其进行了动力学过程的初步理论研究。首先,针对该二次电子倍增阴极,建立了动力学模型,获得了二次电子的位移和速度方程,讨论了电子初始出射速度对其轨迹、渡越时间和碰撞能量的影响,理论给出了渡越时间和碰撞能量的近似解析表达式。其次,通过动力学方程与Vaughan二次电子产额经验公式的耦合求解,获得了该二次电子倍增阴极的工作区间,并对其进行了细致讨论。结果表明:该新型二次电子倍增阴极二极管概念上是可行的,在涂敷高二次电子产额系数材料的圆柱形介质上施加合适的轴向和径向静电场(MV/m量级)以及轴向静磁场(T量级),可以达到电子沿阴极表面螺旋行进过程中实现二次电子倍增并最终获得电流沿轴向放大的设计目标。另外,讨论了正电荷沉积引发的二次电子倍增饱和现象,并对阴极发射电流密度进行了理论粗估,结果表明:阴极发射电流密度可达kA/cm2水平,具备强流发射特性;增加外加径向场强幅值可有效提升阴极发射电流密度。  相似文献   

5.
董烨  董志伟  杨温渊  周前红  周海京 《物理学报》2013,62(19):197901-197901
本文利用自编P3D3V PIC程序, 数值研究了BJ32矩波导传输TE10模式高功率微波在介质窗内、 外表面引发的次级电子倍增过程, 给出了次级电子3维空间位置分布特征、介质窗表面法向静电场分布规律以及电子数密度分布特性. 模拟结果表明: 对于介质窗内侧, 微波强场区域率先进入次级电子倍增过程; 而对于介质窗外侧, 则是微波弱场区域优先进入次级电子倍增过程. 形成机理可以解释为: 微波坡印廷矢量方向与介质窗外表面法向相同而与内表面法向相反, 内侧漂移运动导致强场区域电子易于被推回表面, 有利于次级电子倍增优先形成; 外侧漂移运动导致强场区域电子易于被推离表面, 不利于次级电子倍增形成. 准3维模型相对1维模型: 介质窗内侧次级电子倍增过程中, 次级电子倍增进入饱和时间长、饱和次级电子数目少、平均电子能量高、 入射微波功率低、沉积功率低; 介质窗外侧次级电子倍增过程中, 次级电子倍增进入饱和时间短、饱和次级电子数目少、平均电子能量低、 入射微波功率低、沉积功率低. 沉积功率与入射微波功率比值与微波模式、强度及介质窗内外侧表面关系不大, 准3维和1维模型计算结果均在1%–2%左右水平. 关键词: 高功率微波 介质表面次级电子倍增 粒子模拟 横向电磁场分布  相似文献   

6.
为研究高功率微波及材料特性参数对介质沿面闪络击穿过程的影响,采用自编的1D3V PIC-MCC程序,通过粒子模拟手段,得到了电子与离子数目、电子及离子密度分布、空间电荷场时空分布、电子平均能量、放电功率、表面沉积功率、激发电离损耗功率、电离频率等重要物理量。结果表明:电离频率随场强增加而增加,达到饱和后缓慢下降,强场诱发的二次电子数目更多导致本底沉积功率增高;电离频率随频率减小而增加,达到饱和后缓慢下降,频率太高会抑制次级电子倍增;因此,低频强场下击穿压力较大;反射引发表面电场下降及磁场增加效应,降低表面场强虽使表面击穿压力下降,但磁场的增加会导致二次电子倍增起振时间缩短,且会增加器件内部击穿风险;圆极化相对线极化诱导二次电子数目更多、本底沉积功率更高,击穿风险增加;短脉冲产生电子、离子总数少,平均能量低,沉积功率低,击穿风险低于长脉冲;脉冲上升时间的缩短和延长,只会提前或推后击穿时间,并不会改善击穿压力;材料二次电子发射率的增加会给击穿造成巨大压力,表面光滑度对击穿过程影响不大;电离频率和电子平均能量随释气压强增加均先增加后减小,低气压二次电子倍增占优,高气压碰撞电离占优。  相似文献   

7.
微波磁场和斜入射对介质表面次级电子倍增的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
蔡利兵  王建国 《物理学报》2010,59(2):1143-1147
分别研究了微波磁场和斜入射微波电场对介质表面次级电子倍增的影响.利用particle-in-cell/Monte Carlo方法,获得了微波磁场和斜入射微波电场条件下电子数量、介质表面直流场、电子平均能量和介质表面吸收功率的时间变化图像.模拟结果表明,斜入射和微波磁场虽然会显著影响电子的平均能量,但对电子数量和介质表面吸收功率的影响并不大,因此不会对微波介质表面击穿产生太大作用.  相似文献   

8.
蔡利兵  王建国  朱湘琴  王玥  宣春  夏洪富 《物理学报》2012,61(7):75101-075101
本文采用Particle-in-cell数值方法模拟研究了不同强度外磁场条件下的次级电子倍增效应过程,分析了外磁场对次级电子倍增效应的影响.结果表明,当外磁场达到一定强度时,次级电子倍增效应在微波传输的一半时间内被抑制.通过外磁场抑制,在理想条件下可以使介质窗的微波传输功率容量提高4倍以上.  相似文献   

9.
朱方  张兆传  戴舜  罗积润 《物理学报》2011,60(8):84103-084103
基于次级电子倍增动力学模型和次级电子发射曲线,运用蒙特卡罗方法模拟电介质表面具有纵向射频电场作用下的单边次级电子倍增现象,研究次级电子倍增的表面电场敏感曲线和时间演化图像. 以一个S波段射频介质窗为例,计算次级电子在其介质表面的沉积功率. 结果表明,纵向射频电场可能加剧电介质表面的次级电子倍增效应,易于导致介质片破裂,不利于高频能量传输. 关键词: 纵向射频场 次级电子倍增效应 蒙特卡罗方法 功率沉积  相似文献   

10.
介质面刻槽抑制二次电子倍增蒙特卡罗模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
利用蒙特卡罗方法,针对介质表面刻槽抑制二次电子倍增的实验现象,进行了数值模拟研究。给出了二次电子倍增动力学方程、刻槽边界条件、二次电子初始能量与角度分布以及发射率分布关系;讨论了槽深、槽宽对二次电子倍增的抑制效果,以及同一刻槽结构对不同微波场强度和频率的二次电子倍增抑制能力;分析了双边二次电子倍增区域。数值研究结果表明:增加槽深、缩短槽宽可以抑制二次电子倍增;同一刻槽结构,更易于抑制高频场、场强较低或较高下的二次电子倍增;刻槽尺寸的选择还应避开双边二次电子倍增区间。将数值模拟结果与相关实验现象进行了对比,吻合得较好。  相似文献   

11.
翁明  谢少毅  殷明  曹猛 《物理学报》2020,(8):210-216
以介质填充的平行板放电结构为例,本文主要研究了介质填充后微波低气压放电和微放电的物理过程.为了探究介质材料特性对微波低气压放电和微放电阈值的影响,本文采用自主研发的二次电子发射特性测量装置,测量了7种常见介质材料的二次电子发射系数和二次电子能谱.依据二次电子发射过程中介质表面正带电的稳定条件,计算了介质材料稳态表面电位与二次电子发射系数以及能谱参数的关系.在放电结构中引入与表面电位相应的等效直流电场后,依据电子扩散模型和微放电中电子谐振条件,分别探讨了介质表面稳态表面电位的大小对微波低气压放电和微放电阈值的影响.结果表明,介质材料的二次电子发射系数以及能谱参数越大,介质材料的稳态表面电位也越大,对应的微波低气压放电和微放电阈值也越大.所得结论对于填充介质的选择有一定的理论指导价值.  相似文献   

12.
综合考虑发射电子的发射能量、发射角度及微波场的相位分布等因素,运用统计方法,研究了介质表面单边次级电子倍增过程中次级电子数目、瞬时直流场、渡越时间、微波场的沉积功率等次级电子倍增特征物理量随碰撞次数的变化过程,仿真分析了不同夹角、不同反射系数对次级电子倍增的影响。研究结果表明:当倾斜直流场一定时,微波场的反射系数越小,雪崩击穿的延迟时间越长,饱和状态下的次级电子数目越大;微波场一定时,当直流电场平行于介质板表面时,直流电场幅值越大,雪崩击穿的延迟时间越长,饱和状态下的次级电子数目越大,但当电场强度超过一定值时,次级电子倍增现象不再发生,当直流场垂直介质板表面,直流电场幅值越大,雪崩击穿的延迟时间越长,饱和状态下的次级电子数目越小,幅值超过一定值时,次级电子倍增现象同样不会发生。  相似文献   

13.
针对高功率微波介质沿面闪络击穿物理过程,首先建立了理论模型,包括:动力学方程、粒子模拟算法、二次电子发射, 以及电子与气体分子蒙特卡罗碰撞模型、电子碰撞介质表面退吸附气体分子机制;其次,基于理论模型,编制了1D3V PIC-MCC程序,分别针对真空二次电子倍增、高气压体电离击穿和低气压面电离击穿过程,运用该程序仔细研究了电子和离子随时间演化关系、电子运动轨迹、电子及离子密度分布、空间电荷场时空分布、电子平均能量、碰撞电子平均能量、碰撞电子数目随时间演化关系、电子能量分布函数、平均二次电子发射率以及能量转换关系。研究结果表明:真空二次电子倍增引发的介质表面沉积功率只能达到入射微波功率1%左右的水平,不足以击穿;气体碰撞电离主导的高气压体电离击穿,是由低能电子(eV量级)数目指数增长到一定程度导致的,形成位置远离介质表面,形成时间为s量级;低气压下的介质沿面闪络击穿,是在二次电子倍增和气体碰撞电离共同作用下,由于数目持续增长的高能电子(keV量级)碰撞介质沿面导致沉积功率激增而引发的,形成位置贴近介质沿面,形成时间在ns量级。  相似文献   

14.
王新波  申发中  于明  崔万照 《强激光与粒子束》2023,35(3):033003-1-033003-9
微放电是制约航天器微波部件功率容量的主要瓶颈之一。以介质微波部件中典型的介质加载平行板波导为例,基于三维粒子模拟分别对仅考虑外加微波场(情况1)、考虑外加微波场和空间电荷(情况2)以及考虑外加微波场、空间电荷和介质表面电荷(情况3)三种情况下微放电演化过程中电子数目、瞬态二次电子发射系数、归一化反射波电压以及介质表面与上金属板之间的间隙电压随时间的变化进行了仿真,并给出了情况3电子分布和介质表面电荷密度随时间的变化过程。在此基础上,明确了空间电荷和介质表面电荷在微放电过程中所起的不同作用:即空间电荷会使微放电达到饱和状态,介质表面电荷则导致微放电饱和状态无法持续,最后自行熄灭。介质表面电荷导致了微放电过程中介质和金属瞬态二次电子发射系数下降速率不一致,归一化反射波电压幅度随时间变化的包络类似于“眼睛”形状、间隙电压类直流偏置、非对称电子能量分布等特殊现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号