首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient white light-emitting diodes (WOLEDs) were fabricated with a solution-processed single emission layer composed of a molecular and polymeric material mixed-host (MH). The main host used was a blue-emitting molecular material of 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) and the assisting host used was a hole-transport-type polymer of poly(9-vinylcarbazole) (PVK). By co-doping 4,4′-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl and 5,6,11,12-tetraphenylnaphacene into the MH, the performances of the fabricated devices made with different mixing ratio of host materials were investigated, and were to depend on the mixing ratios. Under the optimal PVK:DPVBi ratio (3:7), we achieved a maximum luminance of 14 110 cd/m2 and a maximum current efficiency of 9.5 cd/A. These improvements were attributed to the MH structure, which effectively improved the thermal stability of spin-coated film and enhanced the hole-injection/transporting properties of WOLEDs.  相似文献   

2.
Efficient polymer white-light-emitting diodes (WPLEDs) have been fabricated with a single layer of fluorescent polymer blend. The device structure consists of ITO/PEDOT/PVK/emissive layer/Ba/Al. The emissive layer is a blend of poly(9,9-dioctylfluorene) (PFO), phenyl-substituted PPV derivative (P-PPV) and a copolymer of 9,9-dioctylfluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole (PFO-DHTBT), which, respectively, emits blue, green and red light. The emission of pure and efficient white light was implemented by tuning the blend weight ratio of PFO: P-PPV: PFO-DHTBT to 96:4:0.4. The maximum current efficiency and luminance are, respectively, 7.6 cd/A at 6.7 V and 11930 cd/m2 at 11.2 V. The CIE coordinates of white-light emission were stable with the drive voltages.  相似文献   

3.
通过采用4,4'-bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl (BCzVBi)为蓝色荧光发光单元,绿色磷光材料fac tris(2-phenylpyridine) iridium 敏化红色荧光材料4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB)为混合黄色发光单元,制备了一组白光有机电致发光器件。通过对染料掺杂浓度的优化,以及引入适当厚度的4,4-N,N-dicarbazole-biphenyl (CBP)作为中间层,获得了高效率、高显色指数的白光有机电致发光器件。器件在100 cd/m2亮度下的最高显色指数达到了90,此时的色坐标为(0.32,0.32), 非常接近白光等能点。该组器件的最大电流效率达到了11.00 cd/A,相应器件的最大亮度为13 330 cd/m2。  相似文献   

4.
Non-doped white organic light-emitting devices (WOLEDs) with a quadruple-quantum-well structure were fabricated. An alternate layer of ultrathin blue and yellow iridium complexes was employed as the potential well layer, while potential barrier layers (PBLs) were chosen to be 2,2',2''-(1,3,5-benzenetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) or N,N'-dicarbazolyl-3,5-benzene (mCP) combined TPBi. On adjusting the PBLs for device performance comparison, the results showed that the device with all-TPBi PBLs exhibited a yellow emission with the color coordinates of (0.50,0.47) at a luminance of 1000 cd/m2, while stable white emission with the color coordinates of (0.36,0.44) was observed in the device using mCP combined TPBi as the PBLs. Meanwhile, for the WOLED, with a reduced efficiency roll-off, a maximum luminance, luminous efficiency, and external quantum efficiency of 12,610 cd/m2, 10.2 cd/A, and 4.4%, respectively, were achieved. The performance improvement by the introduction of mCP PBL was ascribed to the well confined exciton and the reduced exciton quenching effect in the multiple emission regions.  相似文献   

5.
Efficient and bright white organic light-emitting devices (WOLEDs) based on phosphor sensitized fluorescence are improved by using an unusual device structure, in which phosphorescent emissive layer is sandwiched between two blue fluorescent doped ones. This architecture allows for resonant energy transfer from both the host singlet and triplet energy levels that minimizes exchange energy losses. Thus, a WOLED with a maximum luminous efficiency of 11.63 cd/A, a maximum power efficiency of 7.37 lm/W, a maximum luminance of 31,770 cd/m2, and Commission Internationale de L’Eclairage coordinates of (0.34, 0.36) is achieved.  相似文献   

6.
White organic light-emitting devices (WOLEDs) based on phosphorescent blue and yellow emitters were fabricated, while p-type di-(4-(N,N-ditolyl-amino)-phenyl)cyclohexane (TAPC) and n-type 2,2′,2″-(1,3,5-benzenetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) were separately utilized as a homogeneous host for both blue and yellow emissive layers (EMLs). Then, various spacers were inserted between the two EMLs for performance characterization. The results showed that for the TAPC-host devices, a device using 4,7-diphenyl-1,10-phenanthroline (Bphen) as the spacer had a maximum current efficiency (CE) of 11.3 cd/A, while stable white light emission with Commission Internationale del’Eclairage (CIE) coordinates of (0.394, 0.435) at a bias of 5 V was observed. Similarly, among the TPBi-host devices, a device using 4,4′-bis(carbazol-9-yl)biphenyl (CBP) as the spacer exhibited a maximum CE of 18.1 cd/A, accompanied by negligible color variation with the CIE coordinates of (0.284,0.333) at 5 V. For the double-EML devices, the improved device efficiency and color stability by introducing proper spacer was attributed to broadened recombination region and efficient energy transfer between the EMLs.  相似文献   

7.
We investigated solution-processed films of 4,4′-bis(2,2-diphenylvinyl)-1,1′-bibenyl (DPVBi) and its blends with N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine (TPD) by atomic force microscopy (AFM). The AFM result shows that the solution-processed films are pin-free and their morphology is smooth enough to be used in OLEDs. We have developed a solution-processed white organic light-emitting device (WOLEDs) based on small-molecules, in which the light-emitting layer (EML) was formed by spin-coating the solution of small-molecules on top of the solution-processed hole-transporting layer. This WOLEDs, in which the EML consists of co-host (DPVBi and TPD), the blue dopant (4,4′-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) and the yellow dye (5,6,11,12-tetraphenylnaphtacene), has a current efficiency of 6.0 cd/A at a practical luminance of 1000 cd/m2, a maximum luminance of 22500 cd/m2, and its color coordinates are quite stable. Our research shows a possible approach to achieve efficient and low-cost small-molecule-based WOLEDs, which avoids the complexities of the co-evaporation process of multiple dopants and host materials in vacuum depositions.  相似文献   

8.
本文采用多发光层结构,制备了高亮度下具有高发光效率,同时在较宽亮度范围内发光颜色稳定的白色磷光有机电致发光器件(WOLED).在对双发光层结构磷光OLEDs的发光机制和载流子传输过程进行系统研究的基础上,将两种磷光OLEDs的发光层结构相结合,获得的多发光层结构磷光WOLED最大电流效率和外量子效率分别为34.6 cd/A和13.5%;当亮度为1000 cd/m^2时,其电流效率和外量子效率分别为33.9 cd/A和13.3%,外量子效率滚降仅为1.5%;亮度从1000 cd/m^2增至10000 cd/m^2的过程中,其CIE色度坐标从(0.342,0.403)变化至(0.326,0.392),变化量ΔCIE为(0.016,0.011).  相似文献   

9.
《Current Applied Physics》2010,10(5):1326-1330
This paper describes the white organic light-emitting diodes (WOLEDs) made from a benzothiazole derivative, N-(4-(benzo[d]thiazol-2-yl)phenyl)-N-phenylnaphthalen-1-amine (BPNA). The bright yellowish-white emission was obtained from a non-doped triple-layer device: ITO/NPB (40 nm)/BPNA (50 nm)/Alq3 (40 nm)/LiF/Al. The Commission Internationale de L’Eclairage (CIE) coordinates of the device were (0.24, 0.36) at 10 V. The maximum brightness of the device was 9225 cd/m2 at 14.4 V. A current efficiency of 3.08 cd/A, a power efficiency of 1.21 lm/W and an external quantum efficiency of 1.18% at a driving current density of 20 mA/cm2 were achieved. WOLED with a DCJTB-doped structure of ITO/TcTa/BPNA/BPNA: DCJTB (0.5%)/BPNA/BCP/Alq3/LiF/Al was fabricated in comparison with the non-doped device. The device emitted bright white light with the CIE coordinates of (0.33, 0.29) at 10 V and a maximum luminance of 7723 cd/m2 at 14.8 V.  相似文献   

10.
利用Ag/tris-(8-hydroxyquinoline) aluminum(Alq3)/Ag/Alq3/Ag这一金属/有机半导体多层结构作为阳极,实现了超低效率滚降的顶发射白光器件。在该器件中,我们在蓝光和橙光发光单元之间引入一个薄的4,4′-bis(9-carbazolyl)-2,2′-biphenyl(CBP)层,从而减少橙光发光层与蓝光发光层的Dexter能量传递,用以改善白光器件发光光谱及效率。通过优化微腔设计,实现了对橙光磷光材料发射的调控。最终,我们获得了在60 000 cd/m2亮度下效率滚降仅为17%的顶发射白光器件。在效率方面,虽然顶发射白光器件与底发射白光器件不相上下,但由于微腔效应的存在,顶发射白光器件的效率滚降却远低于底发射白光器件的效率滚降。  相似文献   

11.
A solution processible deep blue light-emitting molecule composed of pyrene and dialkylfluorene units, 1,6-bis(9,9′-dioctylfluorene-2-yl)pyrene (BDOFP) was synthesized and characterized. The synthesized compound was soluble in common organic solvents and the solution gave a smooth thin film after spin coating. The compound was characterized by using thermogravimetric analysis (TGA), differential calorimetry (DSC), UV–visible spectroscopy, fluorescence spectroscopy and cyclic voltammetry. The maximum UV–visible absorption and PL emission of BDOFP thin film were more red-shifted than those of BDOFP solution due to strong intermolecular interaction between flat segments. To improve color purity and film stability BDOFP was doped to a well-known charge-transporting polymer, poly(N-vinylcarbazole) (PVK). BDOFP thin film showed it maximum PL at 457 nm but the thin films of BDOFP doped PVK films showed it at 443 nm. Organic light-emitting diodes were fabricated with the simple structure of ITO/PEDOT:PSS/emitter/BmPyPB/LiF/Al configuration. BDOFP or three kinds of BDOFP:PVK blends with different ratios (10:90, 30:70, 50:50 by weight) were used as the emissive layers and [1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene] (BmPyPB) as the electron-transporting layer. All of light-emitting devices showed their electroluminescence in blue region of spectrum, especially EL using BDOFP: PVK (1:9) showed a deep-blue light emission with CIE coordinates of (0.14, 0.07). Maximum brightness, external quantum efficiency and current efficiency of the device were 500 cd/m2, 0.7% and 0.44 cd/A, respectively.  相似文献   

12.
This work demonstrates the fabrication of a bright blue organic light-emitting diode (BOLED) with good color purity using 4,4′-bis(2,2-diphenylvinyl)-1,1′-biphenyl (DPVBi) and bathocuproine (BCP) as the emitting layer (EML) and the hole-blocking layer (HBL), respectively. Devices were prepared by vacuum deposition on indium tin oxide (ITO)-glass substrates. The thickness of DPVBi used in the OLED has an important effect on color and efficiency. The blue luminescence is maximal at 7670 cd/m2 when 13 V is applied and the BCP thickness is 2 nm. The CIE coordinate at a luminance of 7670 cd/m2 is (0.165, 0.173). Furthermore, the current efficiency is maximum at 4.25 cd/A when 9 V is applied.  相似文献   

13.
研究了新型高效蓝色掺杂剂EBDP的电致发光性能. 分别以EBDP为掺杂剂制备了结构为氧化铟 锡(ITO)/酞菁铜(CuPc)/N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)/2- 叔丁基-9,10-二-(2-萘基)蒽(TBADN):EBDP/8-羟基喹啉铝(Alq3)/LiF/Al 与ITO /CuPc/NPB/TBADN:EBDP: 4-二氰亚甲基-2-叔丁基-6-(1,1,7,7-四甲基久咯呢定基-9-烯基)- 4H-吡喃/Alq3 关键词: 有机电致发光 蓝色掺杂剂 蓝色电致发光器件 白色电致发光器件  相似文献   

14.
侯留东  李伟  段炼  邱勇 《中国物理快报》2008,25(4):1457-1460
Efficient blue small molecular phosphorescent fight-emitting diodes with a blue phosphorescent dye bis(3,5- difluoro-2-(2-pyridyl)-phenyl-(2-carboxypride) iridium (Ⅲ) (Flrpic) doped into a novel small-molecule host 9,9- bis[4-(3,6-di-tert-butylcarbazol-9-yl)phenyl] fluorene (TBCPF) as the light-emitting layer have been fabricated by spin-coating. The host TBCPF can form homogeneous amorphous films by spin-coating and has triplet energy higher than that of the blue phosphorescent dye Flrpic. All the devices with different Flrpic concentration in the emitting layer give emission from Flrpic indicating complete energy transfer from TBCPF to Flrpic. The device shows the best performance with a peak brightness of 8050 cd/m^2 at 10.2 V and the maximum current efficiency up to 3.52 cd/A, when the Flrpic doped concentration is as high as 16%.  相似文献   

15.
Highly efficient white organic light-emitting devices (WOLEDs) with a four-layer structure were realized by utilizing phosphorescent blue and yellow emitters. The key concept of device construction is to combine host–guest doping system of the blue emitting layer (EML) and the host-free system of yellow EML. Two kinds of WOLEDs incorporated with distinct host materials, namely N,N'-dicarbazolyl-3,5-benzene (mCP) and p-bis(triphenylsilyly)benzene (UGH2), were fabricated. Without using light out-coupling technology, a maximum current efficiency (ηC) of 58.8 cd/A and a maximum external quantum efficiency (ηEQE) of 18.77% were obtained for the mCP-based WOLED; while a maximum ηC of 65.3 cd/A and a maximum ηEQE of 19.04% were achieved for the UGH2-based WOLED. Meanwhile, both WOLEDs presented higher performance than that of conventionally full-doping WOLEDs. Furthermore, systematic studies of the high-efficiency WOLEDs were progressed.  相似文献   

16.
朱键卓  李文连 《发光学报》2012,33(3):299-303
采用复合母体技术制备了一种高效率高显色指数白光有机发光二极管。驱动电压在8 V到12 V变化时,器件的CIE-1931色坐标由(0.343 2, 0.339 7)变化到(0.324 3, 0.321 8),相关色温由5 035 K变化到5 915 K,其显色指数均保持在90以上。器件在14 V时达到最大亮度,为27 853 cd/m2,在7.5 V时达到最大效率为9.58 cd/A。实验中通过调节绿色和红色发光层的厚度来调节器件的发光光谱,通过敏化绿色和红色发光成分以实现电致发光效率的提高,器件的最大效率比没有采用敏化机制的参比器件提高了73.6%。  相似文献   

17.
The driving voltage of white organic light-emitting diodes (WOLEDs) with blue fluorescent and red phosphorescent emitting materials was lowered by using a device architecture with little energy barrier between emitting layers. A mixed layer of hole and electron transport materials was used as a host material and an interlayer, reducing the driving voltage of WOLEDs. The driving voltage of WOLEDs was reduced by more than 4 V and power efficiency of WOLEDs was improved by more than 40% due to little energy barrier for holes and electrons injection in light-emitting layer. In addition, there was little change of electroluminescence spectra from 100 to 10,000 cd/m2.  相似文献   

18.
Using cationic iridium complexes as dopants and a small molecule, 9,9-bis[4-(3,6-di-tert-butylcarbazol-9-yl)phenyl]fluorene, as the host, efficient organic light-emitting diodes (OLEDs) have been fabricated from a solution process. The blue-green OLEDs achieve a peak current efficiency of 19.8 cd?A?1 and a maximum brightness of 17700 cd?m?2. White OLEDs have been fabricated with a peak current efficiency of 16.8 cd?A?1 and Commission Internationale de l’Éclairage coordinates around (0.37, 0.44). It is suggested that cationic iridium complexes, in addition to their use in light-emitting electrochemical cells, are promising phosphorescent dopants for solution-processed small-molecule OLEDs.  相似文献   

19.
吴清洋  谢国华  张振松  岳守振  王鹏  陈宇  郭闰达  赵毅  刘式墉 《物理学报》2013,62(19):197204-197204
利用荧光材料PT-01, PT-86, PT-05作为黄色荧光客体, 蓝色荧光客体以及荧光母体制备了一种基于连续性掺杂结构的全荧光白光有机电致发光器件. 其发光层为主体/客体薄层/主体/客体薄层···交替蒸镀的重复单元. 通过优化发光层中主体的厚度并检测发光层中单线态激子的分布, 将黄、蓝两种客体染料生长在发光层中适当的位置, 得到了高效且光谱稳定的全荧光白光器件. 其最大电流效率为11.2 cd/A, 亮度在159–20590 cd/m2范围内色坐标仅有(±0.004,±0.005)的改变. 基于这种连续性掺杂结构制备的器件, 其性能不但可以达到传统主-客体共掺结构所制备的器件的性能,而且具有较高的可重复性, 更适合产业化大批量生产. 关键词: 白色有机电致发光器件 连续性掺杂 能量转移 可重复性  相似文献   

20.
通过设计合理的微腔结构,制备了基于绿光染料C545t、黄光染料Rubrene、红光染料DCJTB的3种顶发射有机电致发光器件。研究了不同发光染料对顶发射器件的光谱的影响。研究表明,微腔结构对光谱具有窄化作用。绿光、黄光器件的发光峰波长并未随视角增大而明显变化,体现出良好的光谱角度性,而红光器件却出现了明显的光谱蓝移现象。绿光器件的最大功率效率为8.7 lm/W,当电流密度为45 m A/cm2时,亮度能达到7 205 cd/m2;黄光器件的电流效率最大值为11.5 cd/A,当电流密度为48 m A/cm2时,亮度可达到3 770 cd/m2;红光器件的电流效率最大能达到3.54 cd/A,当电流密度为50 m A/cm2时,可获得1 358 cd/m2的亮度。采用合适的发光材料以及合适的器件结构,不仅可以提高顶发射器件的色纯度及发光效率,还可以改善器件发光光谱的角度依赖性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号