首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
TBPe作蓝光材料的双层白色有机电致发光器件的性能   总被引:7,自引:6,他引:1       下载免费PDF全文
选用一种新型高效的蓝光有机小分子荧光染料TBPe,首次制备了以PVK:TBPe为蓝光发光层和Alq3:rubrene为橙红光发光层的双层白光有机电致发光器件,器件结构为ITO/PVK:TBPe/Alq3:rubrene/Mg:Ag。通过适当调节各有机层的掺杂比例和厚度,得到了发光性能比较理想的白光器件。器件在7V左右启亮,而且随着外加电压的变化,色坐标基本保持不变,在外加驱动电压为16V时,器件的亮度为738cd/m2,外量子效率为0.2%。我们还尝试选用本身可以发绿白光,而且兼具电子传输特性的母体材料Zn(BTZ)2替代Alq3,器件的最大亮度提高到1300cd/m2,色坐标为(0.32,0.36),更加接近白色等能点,器件其他光电性能也得到了显著地提高。  相似文献   

2.
吴清洋  谢国华  张振松  岳守振  王鹏  陈宇  郭闰达  赵毅  刘式墉 《物理学报》2013,62(19):197204-197204
利用荧光材料PT-01, PT-86, PT-05作为黄色荧光客体, 蓝色荧光客体以及荧光母体制备了一种基于连续性掺杂结构的全荧光白光有机电致发光器件. 其发光层为主体/客体薄层/主体/客体薄层···交替蒸镀的重复单元. 通过优化发光层中主体的厚度并检测发光层中单线态激子的分布, 将黄、蓝两种客体染料生长在发光层中适当的位置, 得到了高效且光谱稳定的全荧光白光器件. 其最大电流效率为11.2 cd/A, 亮度在159–20590 cd/m2范围内色坐标仅有(±0.004,±0.005)的改变. 基于这种连续性掺杂结构制备的器件, 其性能不但可以达到传统主-客体共掺结构所制备的器件的性能,而且具有较高的可重复性, 更适合产业化大批量生产. 关键词: 白色有机电致发光器件 连续性掺杂 能量转移 可重复性  相似文献   

3.
利用激基复合物发光的有机白光电致发光器件   总被引:14,自引:7,他引:7       下载免费PDF全文
冯晶  刘宇  王悦  刘式墉 《发光学报》2002,23(1):25-28
以NPB为空穴传输材料,(dppy)BF为发光层,Alq为电子传输层和色度调节层,制备了有机白光电致发光器件.该器件的白光发射是来自于(dppy)BF与NPB的固界表面形成的激基复合物发光,以及NPB与(dppy)BF发射的蓝光.该白光器件的色度稳定,在电压10~25V的变化范围内,色坐标变化由(0.29,0.33)到(0.31,0.35).器件在4V开启,12V电压下亮度和效率分别为200cd/m2和0.45lm/W.  相似文献   

4.
利用一种来源于PPV的发蓝光的齐聚物材料2,5,2',5'-tetra(4'-biphenylenevinyl)-biphenyl(TBVB)制作非掺杂的有机电致蓝光和白光器件。蓝光器件的结构为ITO/NPB/TBVB/Alq3/LiF/Al,其中TBVB用作发光层;白光器件的结构为ITO/NPB/TBVB/rubrene/Alq3/LiF/Al,其中TBVB与超薄层(平均“厚度”0.05~0.20nm)的Rubrene相结合用作发光层,二者分别发蓝光和黄光。在蓝光器件中,当TBVB的厚度为30nm时,器件发出色坐标为(0.20,0.26)的蓝光,其最大亮度和效率分别达到2154cd/m2和1.62cd/A。在白光器件中,可通过调节TBVB和Rubrene的厚度实现对器件发光色度的调节。当TBVB和Rubrene的厚度分别为10,0.15nm时,器件在亮度为4000cd/m2时发光色坐标为(0.33,0.34),非常接近白光等能点,且随着电压的变化始终处于白光区。当电压为16V时该器件达到最高亮度4025cd/m2;当电压为6V时器件有最高的效率3.2cd/A。  相似文献   

5.
朱键卓  李文连 《发光学报》2012,33(3):299-303
采用复合母体技术制备了一种高效率高显色指数白光有机发光二极管。驱动电压在8 V到12 V变化时,器件的CIE-1931色坐标由(0.343 2, 0.339 7)变化到(0.324 3, 0.321 8),相关色温由5 035 K变化到5 915 K,其显色指数均保持在90以上。器件在14 V时达到最大亮度,为27 853 cd/m2,在7.5 V时达到最大效率为9.58 cd/A。实验中通过调节绿色和红色发光层的厚度来调节器件的发光光谱,通过敏化绿色和红色发光成分以实现电致发光效率的提高,器件的最大效率比没有采用敏化机制的参比器件提高了73.6%。  相似文献   

6.
采用双极性材料4,4'-bis(carbazol-9-yl)biphenyl(CBP)为主体,蓝色荧光染料N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl)vinyl)phenyl)-N-phenylbenzenamine(N-BDAVBi)和橙色磷光染料Iridium(III)bis(4-phenylthieno[3,2-c]pyridinato-N,C2')acetylacetonate(PO-01)为客体,制备了双发光层结构的白色有机电致发光器件,通过调整发光层的位置及在两个发光层之间引入间隔层,研究了器件的光电特性.间隔层的引入调整了发光层中激子的分布,改善了器件的光电性能.器件的最大电流效率和功率效率分别为19.6cd/A和12.3lm/W.发光亮度从15cd/m2增加至10 310cd/m2的过程中,器件的色坐标从(0.438,0.476)变化至(0.316,0.389),始终处于白光区.  相似文献   

7.
李青  赵娟  王琦  于军胜 《发光学报》2012,33(1):45-50
采用蓝色bis (FIrpic)和黄色bis iridium(acetylacetonate) 两种磷光染料,制备了双发光层结构的白色有机电致发光器件,器件结构为ITO/TAPC (30 nm)/host: (t-bt)2Ir(acac) /spacer (x nm)/host: FIrpic (15 nm, 8%)/Bphen (40 nm)/Mg∶Ag (200 nm)。分别选用p型1,1-bis cyclohexane (TAPC)和n型tris borane (3TPYMB)作为主体材料制备了两种类型的器件,通过在两个发光层之间加入一层较薄的间隔层进行器件优化。结果表明,加入间隔层之后,器件性能得到提高,获得了色稳定性较好的白光器件。当主体为TAPC时,使用间隔层后器件取得最大亮度为19 550 cd/m2,最大电流效率为8.3 cd/A;当主体为3TPYMB时,使用间隔层后器件的最大亮度为1 950 cd/m2,最大电流效率为30.7 cd/A。实验结果表明,器件性能的提高,是由于加入了间隔层之后载流子复合区域拓宽,促进了发光层中电子和空穴的平衡。  相似文献   

8.
采用Pd(PPh3)2Cl2-CuI为催化剂,Ph3P为配体,4-溴-1,8-萘二酸酐为原料,在乙醇溶液中高收率地合成了4-苯乙炔-1,8-萘酰亚胺和4-对甲基苯乙炔-1,8-萘酰亚胺荧光新化合物。光谱研究表明,它们的最大紫外吸收波长(λUV,max)分别为374,380 nm,最大荧光发射波长(λFL,max)分别为446,462 nm,且有较高的荧光量子效率。电致发光性能测试表明,器件的最大发光亮度达到2250 cd/m2,是一类有潜在应用价值的小分子发光材料。  相似文献   

9.
白色有机发光器件及其稳定性   总被引:8,自引:8,他引:0  
报道了一种稳定的白色有机薄膜电致发光器件.电流效率6cd/A,在电流密度20mA/cm2驱动下,亮度为1026cd/m2;最高亮度21200cd/m2,色度(x=0.32,y=0.40).该器件具有较平稳的效率电流关系,即具有弱的电流荧光猝灭.初始亮度100cd/m2下,半亮度寿命达22245h.  相似文献   

10.
有机/聚合物白光电致发光器件   总被引:10,自引:3,他引:7  
将聚合物材料作为空穴传输材料,以有机小分子蓝光染料1,1,4,4-四苯基丁二烯,绿光染料8-羟基喹啉铝和黄光染料5,6,11,12-四苯基四苯并作为产生白光所需要的三种色源,制备了有机/聚合物白光电致发光器件。这种器件的设计使聚合物的热电稳定性好的优点与有机小分子材料荧光效率高的优点相结合,拓宽了材料的选择范围,更有利于选择能带匹配的材料体系。器件的开启电压为2.5V左右,发光效率在9V时达到最大1.24lm/W,该电压下的亮度达到1600cd/m^2,器件的最大亮度超过20000cd/m^2(18V),器件最佳色度为(0.319,0.332),这在目前国际上有报道的有机/聚合物白光发光器件中居领先水平。  相似文献   

11.
We report on white organic light-emitting diodes(WOLEDs) based on polyvinylcarbazole(PVK) doped with 1,1-bis((di-4-tolylamino)phenyl)cyclohexane(TAPC) and perylene,and investigate the luminescence mechanism of the devices.The chromaticity of light emission can be tuned by adjusting the concentration of the dopants.White light with the Commission Internationale de L’Eclairage(CIE) coordinates of(0.33,0.34) is achieved by mixing the yellow electromer emission of TAPC and the blue monomer emission of perylene from the device ITO/PVK:TAPC:perylene(100:9:1 in wt.)(100 nm)/tris-(8-hydroxyquinoline aluminum(Alq 3)(10 nm)/Al.The device exhibits a maximal luminance of 3727 cd/m2 and a current efficiency of 2cd/A.  相似文献   

12.
《Current Applied Physics》2014,14(5):680-684
White organic light-emitting devices (WOLEDs) with fluorescent donor-acceptor-substituted spirobifluorene compounds (red 2-diphenylamino-7-(2,2-dicyanovinyl)-9,9′-spirobifluorene and blue 2-diphenylamino-7-(2,2-diphenylvinyl)-9,9′-spirobifluorene) have been fabricated. The optimized WOLEDs shows a maximum current efficiency 5.9 cd/A and very low efficiency roll-off. From the brightness at maximum current efficiency to high brightness of 10000 cd/m2, the current efficiency roll-off is only 0.4%. It can be attributed to the ambipolar blue fluorescent emitter with voltage-independnet mobility which makes the device having a broader charge recombination zone and balance of carrier transport.  相似文献   

13.
We report on white organic light-emitting diodes (WOLEDs) based on polyvinylcarbazole (PVK) doped with 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) and perylene, and investigate the luminescence mechanism of the devices. The chromaticity of light emission can be tuned by adjusting the concentration of the dopants. White light with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.34) is achieved by mixing the yellow electromer emission of TAPC and the blue monomer emission of perylene from the device ITO/PVK: TAPC: perylene (100:9:1 in wt.) (100 nm)/tris-(8-hydroxyquinoline aluminum (Alq3) (10 nm)/Al. The device exhibits a maximal luminance of 3727 cd/m2 and a current efficiency of 2 cd/A.  相似文献   

14.
王子君  赵娟  周畅  祁一歌  于军胜 《中国物理 B》2017,26(4):47302-047302
Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m~2 to 6998 cd/m~2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.  相似文献   

15.
White organic light-emitting devices (WOLEDs) based on phosphorescent blue and yellow emitters were fabricated, while p-type di-(4-(N,N-ditolyl-amino)-phenyl)cyclohexane (TAPC) and n-type 2,2′,2″-(1,3,5-benzenetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) were separately utilized as a homogeneous host for both blue and yellow emissive layers (EMLs). Then, various spacers were inserted between the two EMLs for performance characterization. The results showed that for the TAPC-host devices, a device using 4,7-diphenyl-1,10-phenanthroline (Bphen) as the spacer had a maximum current efficiency (CE) of 11.3 cd/A, while stable white light emission with Commission Internationale del’Eclairage (CIE) coordinates of (0.394, 0.435) at a bias of 5 V was observed. Similarly, among the TPBi-host devices, a device using 4,4′-bis(carbazol-9-yl)biphenyl (CBP) as the spacer exhibited a maximum CE of 18.1 cd/A, accompanied by negligible color variation with the CIE coordinates of (0.284,0.333) at 5 V. For the double-EML devices, the improved device efficiency and color stability by introducing proper spacer was attributed to broadened recombination region and efficient energy transfer between the EMLs.  相似文献   

16.
We investigated solution-processed films of 4,4′-bis(2,2-diphenylvinyl)-1,1′-bibenyl (DPVBi) and its blends with N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine (TPD) by atomic force microscopy (AFM). The AFM result shows that the solution-processed films are pin-free and their morphology is smooth enough to be used in OLEDs. We have developed a solution-processed white organic light-emitting device (WOLEDs) based on small-molecules, in which the light-emitting layer (EML) was formed by spin-coating the solution of small-molecules on top of the solution-processed hole-transporting layer. This WOLEDs, in which the EML consists of co-host (DPVBi and TPD), the blue dopant (4,4′-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) and the yellow dye (5,6,11,12-tetraphenylnaphtacene), has a current efficiency of 6.0 cd/A at a practical luminance of 1000 cd/m2, a maximum luminance of 22500 cd/m2, and its color coordinates are quite stable. Our research shows a possible approach to achieve efficient and low-cost small-molecule-based WOLEDs, which avoids the complexities of the co-evaporation process of multiple dopants and host materials in vacuum depositions.  相似文献   

17.
Highly efficient white organic light-emitting devices (WOLEDs) with a four-layer structure were realized by utilizing phosphorescent blue and yellow emitters. The key concept of device construction is to combine host–guest doping system of the blue emitting layer (EML) and the host-free system of yellow EML. Two kinds of WOLEDs incorporated with distinct host materials, namely N,N'-dicarbazolyl-3,5-benzene (mCP) and p-bis(triphenylsilyly)benzene (UGH2), were fabricated. Without using light out-coupling technology, a maximum current efficiency (ηC) of 58.8 cd/A and a maximum external quantum efficiency (ηEQE) of 18.77% were obtained for the mCP-based WOLED; while a maximum ηC of 65.3 cd/A and a maximum ηEQE of 19.04% were achieved for the UGH2-based WOLED. Meanwhile, both WOLEDs presented higher performance than that of conventionally full-doping WOLEDs. Furthermore, systematic studies of the high-efficiency WOLEDs were progressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号