首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
The coherent spin dynamics of a two-dimensional electron gas in a GaAs/AlGaAs quantum well is experimentally studied near the filling factors ν = 3 and 1. The nonmonotonic character of the dependence of the spin dephasing time of a Goldstone spin exciton on the filling factor is found experimentally. The observed effect can be due to the formation of a new spin relaxation channel, when the main state of the two-dimensional electron system is a spin-textured liquid.  相似文献   

2.
A resistively detected NMR technique was used to probe the two-dimensional electron gas in a GaAs/AlGaAs quantum well. The spin-lattice relaxation rate (1/T(1)) was extracted at near complete filling of the first Landau level by electrons. The nuclear spin of (75)As is found to relax much more efficiently with T --> 0 and when a well developed quantum Hall state with R(xx) approximately 0 occurs. The data show a remarkable correlation between the nuclear spin relaxation and localization. This suggests that the magnetic ground state near complete filling of the first Landau level may contain a lattice of topological spin texture, i.e., a Skyrmion crystal.  相似文献   

3.
The average electron spin polarization Rho of a two-dimensional electron gas confined in GaAs/GaAlAs multiple quantum wells was measured by NMR near the fractional quantum Hall state with filling factor nu = 2/3. Above this filling factor (2/3< or = nu < 0.85), a strong depolarization is observed corresponding to two spin flips per additional flux quantum. The most remarkable behavior of the polarization is observed at nu = 2/3, where a quantum phase transition from a partially polarized (Rho approximately 3/4) to a fully polarized (Rho = 1) state can be driven by increasing the ratio between the Zeeman and the Coulomb energy above a critical value eta(c) = Delta(Z)/Delta(C) = 0.0185.  相似文献   

4.
Electron spin resonance in GaAs/AlGaAs quantum wells in the vicinity of odd filling factors ν = 3, 5, and 7 is investigated. The spin relaxation time of two-dimensional electrons is determined from the width of the microwave resonance absorption line. Dependences of the spin relaxation time on the filling factor, temperature, and orientation of the magnetic field are investigated. The spin relaxation time decreases noticeably upon deviation from odd filling factors, and its maximum value depends on the angle between the magnetic field and the plane of the two-dimensional electron gas.  相似文献   

5.
Electron spin resonance in a system of two-dimensional electrons with a high electron mobility has been investigated and the position, width, intensity, and line shape of the resonance microwave absorption have been studied as functions of the filling factor and temperature. It has been shown that the ESR linewidth in high-electron-mobility GaAs/AlGaAs quantum wells may reach 30 MHz, which corresponds to a spin relaxation time of the two-dimensional electrons of 10 ns. The experimental data on the linewidth of the spin resonance at a filling factor of 1 are compared with the theoretical results for various spin relaxation mechanisms. It has been shown that the dominant mechanism of spin relaxation at a filling factor of 1 and a temperature of 1.5–4 K is the mutual scattering of spin excitons.  相似文献   

6.
We present measurements of optical interband absorption in the fractional quantum Hall regime in a GaAs quantum well in the range 0相似文献   

7.
An experimental technique is developed to perform photoexcitation of an ensemble of translationinvariant triplet excitons, to manipulate this ensemble, and to detect the properties of its components. In particular, the influence of temperature on the radiationless decay during the relaxation of an exciton spin into the ground state of a Hall insulator at a filling factor ν = 2 is studied. The generation of photoexcited electrons and holes is controlled using photoinduced resonance reflection spectra, which makes it possible to estimate the density of light-generated electron–hole pairs and to independently control the self-consistent generation of electrons at the first Landau level and holes (vacancies) at the ground (zero) cyclotron electronic level. The existence of triplet excitons is established from inelastic light scattering spectra, which are used to determine the singlet–triplet exciton splitting. The lifetimes of triplet excitons, which are closely related to the relaxation time of an electron spin, are extremely long: they reach 100 μs in perfect GaAs/AlGaAs heterostructures with a high mobility of two-dimensional electrons at low temperatures. These long spin relaxation times are qualitatively explained, and the expected collective behavior of high-density triplet magnetoexcitons at sufficiently low temperatures, which is related to their Bose nature, is discussed.  相似文献   

8.
We investigate low-frequency electron spin dynamics in a quantum Hall system with wire confinement by nuclear spin relaxation measurements. We developed a technique to measure the local nuclear spin relaxation rate T(1)(-1). T(1)(-1) is enhanced on both sides of the local filling factor ν(wire)=1, reflecting low-frequency fluctuations of electron spins associated with Skyrmions inside the wire. As the wire width is decreased, the fast nuclear spin relaxation is suppressed in a certain range of Skyrmion density. This suggests that the multi-Skyrmion state is modified and the low-frequency spin fluctuations are suppressed by the wire confinement.  相似文献   

9.
We report on a study of the spin relaxation of a strongly correlated two-dimensional electron gas in the nu=2kappa+1 quantum Hall regime. As the initial state we consider a coherent deviation of the spin system from the B direction and investigate a breakdown of this Goldstone-mode (GM) state due to the spin-orbit coupling and smooth disorder. The relaxation is considered in terms of annihilation processes in the system of spin waves. The problem is solved at an arbitrary value of the deviation. We predict that the GM relaxation occurs nonexponentially with time.  相似文献   

10.
We examined the electron spin degree of freedom around the total Landau-level filling factor ν=1 in a bilayer system via nuclear spins. In a balanced bilayer system, nuclear-spin-lattice relaxation rate 1/T1, which probes low-energy electron spin fluctuations, increases gradually as the system is driven from the quantum Hall (QH) state through a phase transition to the compressible state. This result demonstrates that the electron spin degree of freedom is not frozen either in the QH or compressible states. Furthermore, as the density difference between the two layers is increased from balanced bilayer to monolayer configurations, 1/T1 around ν=1 shows a rapid yet smooth increase. This suggests that pseudospin textures around the bilayer ν=1 system evolves continuously into the spin texture for the monolayer system.  相似文献   

11.
The nuclear spin dynamics in an asymmetrically doped 16-nm AlAs quantum well grown along the [001] direction has been studied experimentally using the time decay of the Overhauser shift of paramagnetic resonance of conduction electrons. The nonzero spin polarization of nuclei causing the initial observed Overhauser shift is due the relaxation of the nonequilibrium spin polarization of electrons into the nuclear subsystem near electron paramagnetic resonance owing to the hyperfine interaction. The measured relaxation time of nuclear spins near the unity filling factor is (530 ± 30) min at the temperature T = 0.5 K. This value exceeds the characteristic spin relaxation times of nuclei in GaAs/AlGaAs heterostructures by more than an order of magnitude. This fact indicates the decrease in the strength of the hyperfine interaction in the AlAs quantum well in comparison with GaAs/AlGaAs heterostructures.  相似文献   

12.
13.
Using magnetocapacitance data in tilted magnetic fields, we directly determine the chemical potential jump in a strongly correlated two-dimensional electron system in silicon when the filling factor traverses the spin and the cyclotron gaps. The data yield an effective g factor that is close to its value in bulk silicon and does not depend on the filling factor. The cyclotron splitting corresponds to the effective mass that is strongly enhanced at low electron densities.  相似文献   

14.
JETP Letters - The spin resonance of two-dimensional conduction electrons in a ZnO/MgZnO heterojunction in tilted magnetic fields is studied near the filling factor $$\nu = 2$$ . The analysis of...  相似文献   

15.
We measure the chemical potential jump across the fractional gap in the low-temperature limit in the two-dimensional electron system of GaAs/AlGaAs single heterojunctions. In the fully spin-polarized regime, the gap for filling factor nu=1/3 increases linearly with the magnetic field and is coincident with that for nu=2/3, reflecting the electron-hole symmetry in the spin-split Landau level. In low magnetic fields, at the ground-state spin transition for nu=2/3, a correlated behavior of the nu=1/3 and nu=2/3 gaps is observed.  相似文献   

16.
Investigation of acoustic edge magnetoplasma excitations in micrometer two-dimensional electron disks has been carried out. It has been shown that additional acoustic edge magnetoplasma modes associated with the existence of incompressible strips in the two-dimensional electron system caused by Zeeman spin splitting can appear in the system at temperatures below the Zeeman energy. The magnetic dispersion of the first “spin” branch of acoustic edge magnetoplasmons has been studied. It has been shown that this mode vanishes as the filling factor ν = 1 is approached. The dependence of the relative amplitude of acoustic edge magnetoplasmons on the filling factor has also been investigated.  相似文献   

17.
A spin current perpendicular to the electric current is investigated around a Landau level filling factor nu=3 in a GaAs/AlGaAs two-dimensional electron system. Measurements of dynamic nuclear polarization in the vicinity of the edge of a specially designed Hall bar sample indicate that the direction of the spin current with respect to the Hall electric field reverses its polarity at nu=3, where the dissipative current carried by holes in the spin up Landau level is replaced with that by electrons in the spin down Landau level.  相似文献   

18.
We investigate the electron spin states in the bilayer quantum Hall system at total Landau level filling factor nu=2 exploiting current-pumped and resistively detected NMR. The measured Knight shift, K(S), of 75As nuclei reveals continuous variation of the out-of-plane electronic spin polarization between nearly full and zero as a function of density imbalance. Nuclear spin relaxation measurements indicate a concurrent development of an in-plane spin component. These results provide direct information on the spin configuration in this system and comprise strong evidence for the spin canting suggested by previous experiments.  相似文献   

19.

A fundamentally new collective state, namely, the magnetofermionic condensate, is discovered during photoexcitation of a sufficiently dense gas of long-lived triplet cyclotron magnetoexcitons in a twodimensional Hall insulator with a high electron mobility, a filling factor of ν = 2, and temperatures of T < 1 K. The condensed phase coherently interacts with an external electromagnetic field, exhibits superradiant properties in the recombination of correlated condensate electrons with heavy holes in the valence band, and spreads nondissipatively in the layer of a two-dimensional electron gas to macroscopical large distances, transferring an integer spin. The observed effects are explained in terms of a coherent condensate in a nonequilibrium system of two-dimensional fermions with a fully quantized energy spectrum, in which a degenerate ensemble of long-lived triplet magnetoexcitons obeying the Bose statistics is present.

  相似文献   

20.
At a very low-temperature of 9 mK, electrons in the second Landau level of an extremely high-mobility two-dimensional electron system exhibit a very complex electronic behavior. With a varying filling factor, quantum liquids of different origins compete with several insulating phases leading to an irregular pattern in the transport parameters. We observe a fully developed nu=2+2/5 state separated from the even-denominator nu=2+1/2 state by an insulating phase and a nu=2+2/7 and nu=2+1/5 state surrounded by such phases. A developing plateau at nu=2+3/8 points to the existence of other even-denominator states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号