首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Colloidal cupric oxide (CuO) nanoparticles were formed by using a colloid-thermal synthesis process. X-ray diffraction patterns, transmission electron microscopy (TEM) images, high-resolution TEM images, and X-ray energy dispersive spectrometry profiles showed that the colloidal CuO nanoparticles were formed. The optical band-gap energy of CuO nanoparticles at 300 K, as determined from the absorbance spectrum, was 3.63 eV. A photoluminescence spectrum at 300 K showed that a dominant emission peak appeared at the blue region. X-ray photoelectron spectroscopy profiles showed that the O 1s and the Cu 2p peaks corresponding to the CuO nanoparticles were observed.  相似文献   

2.
利用醋酸锌[Zn(CH3COO)2·2H2O]和六次甲基四胺(C6H12N4)以一定比例配置成反应溶液,通过水热合成法制备了六角锥状ZnO纳米结构。同时,使用了扫描电子显微镜(SEM)、X射线衍射和选区电子衍射(SAED),对样品的形貌与结构进行了分析。结果表明,样品形貌成六角锥状结构,并且在[002]方向择优生长。通过对样品的光学性能测试,由PL光谱分析可知,样品在379nm处有一个较强的紫外发光峰,并且在可见光区域产生了一些较弱的可见光发射峰,表明制备的六角锥状ZnO纳米结构的晶体质量不是很好。除此之外,对六角锥状ZnO的生长机理也进行了讨论。  相似文献   

3.
Dense ensembles of silicon nanowires were prepared by metal-catalyzed chemical vapor deposition on silicon substrates. Some of these ensembles were doped with phosphorous during growth. The nanowires were characterized using scanning electron microscopy, X-ray diffraction, and mass spectroscopy. Field emission of electrons from these structures was studied at room temperatures in ultra-high vacuum. The measurements were carried out using a parallel-plate diode cell. At high-applied fields, the current–voltage characteristics deviate from the Fowler–Nordheim law and exhibit a step-wise increase in the current with the increasing voltage at 300 K. Possible mechanisms of the observed quantized field emission are discussed.  相似文献   

4.
GaN nanowires have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/Cr thin films at 950 °C. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), FT-IR spectrophotometer, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), and photoluminescence (PL) spectrum were carried out to characterize the microstructure, morphology, and optical properties of GaN samples. The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure and high-quality crystalline, have the size of 30-80 nm in diameter and several tens of microns in length with good emission properties. The growth direction of GaN nanowires is perpendicular to the fringe of (1 0 1) plane. The growth mechanism of GaN nanowires is also discussed in detail.  相似文献   

5.
Co-doped ZnO nanowires have been fabricated through a high temperature vapor–solid deposition process. The temperature-dependent ultraviolet emission properties of Co-doped ZnO nanowires under 10–300 K were reported. The results show that there are multipeak emissions situated at the ultraviolet region. The investigation of the excitonic transition in Co-doped ZnO nanowires shows that there is an intensive ultraviolet periodic emission of Co-doped ZnO nanowires under low temperature. The oscillatory structure has an energy periodicity about 70 meV. The oscillatory structure is mainly attributed to the longitudinal optical phonon replicas of the free exciton. The ultraviolet emission shows an obvious redshift with the increasing temperature.  相似文献   

6.
Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B203/C powder precursors under an argon flow at 1100℃. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.  相似文献   

7.
The effect of surface roughness on subsequent growth of vanadium pentoxide (V2O5) nanowires is examined. With increasing surface roughness, both the number density and aspect ratio of V2O5 nanowires increase. Structures and morphology of obtained nanowires were characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The nanowires are approximately 40-90 nm in diameter and 2 μm in length. X-ray diffraction (XRD) analysis indicates that the obtained nanowires are orthorhombic structure with (0 0 1) out-of-plane orientation. The luminescence property of V2O5 nanowires has been investigated by photoluminescence (PL) at 150 K and 300 K. PL results show intense visible emission, which is attributed to different inter-band transitions between the V 3d and O 2p band. This simple fabrication approach might be useful for fabrication of large area V2O5 nanowires arrays with high density.  相似文献   

8.
Sixfold symmetrical Mg-doped CdS nanowires have been fabricated through high temperature vapor-solid deposition process. The experimental study of the temperature-dependent photoluminescence properties of the Mg-doped CdS nanowires from 10 K to 300 K was reported. The Mg-doped CdS nanowires show intensive cyan-color light emission properties from 10 K to 200 K. The results indicate that there are two strong peaks situated at the green emission (at 528 nm) and red emission (at 655-695 nm), and two weak UV emission peaks at 378 nm and 417 nm, respectively. The ratio of green to red emission was decreased with temperature increased. When the temperature is above 200 K, the orange-color light was observed from the Mg-doped CdS nanowires. Therefore, the intensive emission properties of the Mg-doped CdS nanowires have a great potential for use as nanoscaled optoelectronic intensive light emitters under different temperature.  相似文献   

9.
Single-crystalline zinc oxide (ZnO) nanowires were synthesized from zinc powder and H2O through a simple chemical route at 730 °C in Ar atmosphere. The potential exists for bulk synthesis of ZnO nanowires at temperatures significantly less than the 200–300 °C of thermal evaporation methods reported formerly. Scanning electron microscopy and transmission electron microscopy observations reveal that the ZnO nanowires are structurally uniform, have lengths up to several hundreds of micrometers and diameters of about 40–60 nm and crystallize in a hexagonal structure. The growth of ZnO nanowires is controlled by the vapor–solid crystal-growth mechanism. Photoluminescence measurements show that the ZnO nanowires have a strong near-band ultraviolet emission at 380 nm and a green light emission at 520 nm caused by oxygen vacancies. PACS 81.05.Ys; 78.55.Et  相似文献   

10.
J.H. Cai  G. Ni  G. He  Z.Y. Wu 《Physics letters. A》2008,372(22):4104-4108
ZnO thin films on fused quartz substrates were prepared by a glycol-based Pechini method. The structural and optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), optical transmittance spectrum, and photoluminescence (PL) spectrum. A red emission around 700 nm was found in PL spectrum, and its peak intensity gained a strong enhancement (140%) while annealing temperature increased from 700 °C to 800 °C. The red emission was ascribed to the possible high defect density in boundary layers of nanocrystalline grains.  相似文献   

11.
ZnO nanowires were grown on silicon substrate by metal–organic chemical vapor deposition (MOCVD) without catalysts. The scanning electron microscopy (SEM) observations along with X-ray diffraction (XRD) results suggest that the ZnO nanowires are single crystals vertically well-aligned to silicon substrate. Room-temperature photoluminescence (PL) measurement reveals strong UV emission and weak green emission, which demonstrates that the nanowires are of good optical properties. The mechanism of the catalyst-free growth of ZnO nanowires on silicon substrate is proposed.  相似文献   

12.
Ultralong ZnO nanowires were successfully prepared on a large scale by a microwave-assisted aqueous route without using any surfactant or template at relatively low temperature of 120°C. The obtained nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectrum (EDX). The growth mechanism and photoluminescence of the one-dimensional nanostructure, and photovoltaic performances for dye-sensitized solar cell (DSSC) of the nanowires were discussed in detail.  相似文献   

13.
The structure and photoluminescence properties of TiO2-coated ZnS nanowires were investigated. ZnS nanowires were synthesized by thermal evaporation of ZnS powder and then coated with TiO2 by using the metal organic chemical vapor deposition (MOCVD) technique. We performed scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and photoluminescence (PL) spectroscopy to characterize the as-synthesized and TiO2-coated ZnS nanowires. TEM and XRD analyses revealed that the ZnS core and the TiO2 coatings had crystalline zinc blende and crystalline anatase structures, respectively. PL measurement at room temperature showed that the as-synthesized ZnS nanowires had two emissions: a blue emission centered in the range from 430 to 440 nm and a green emission at around 515 nm. The green emission was found to be dominant in the ZnS nanowires coated with TiO2 by MOCVD at 350°C for one or more hours, while the blue emission was dominant in the as-synthesized ZnS nanowires. Also the mechanisms of the emissions were discussed.  相似文献   

14.
ZnO nanowires were fabricated on Au coated (0 0 0 1) sapphire substrates by using a pulsed Nd:YAG laser with a ZnO target in furnace. ZnO nanowires have various sizes and shapes with a different substrate position inside a furnace. The length and the diameter of these ZnO nanowires were around 3-4 μm and 120-200 nm, respectively, confirmed by scanning electron microscopy (SEM). The diameter control of the nanowires was achieved by varying the position of substrates. The ultraviolet emission of nanowires from the near band-edge emission (NBE) was observed at room temperature. The formation mechanism and the effect of different position of substrates on the structural and optical properties of ZnO nanowires are discussed.  相似文献   

15.
Bi2Te2.7Se0.3 nanowire arrays have been fabricated by electrodeposition into the pores of an anodic aluminum oxide (AAO) template followed by annealing at 300 °C under Ar atmosphere. The as-prepared nanowires were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The nanowires are uniform single crystalline with diameter of ∼14 nm.  相似文献   

16.
利用低压化学气相沉积方法在以Au作催化剂的Si衬底上生长了InN纳米线. 扫描电子显微镜分析表明,这些纳米线的直径在60—100 nm的范围内, 而其长度大于1 μm.高分辨透射电子显微镜图像表明,合成的纳米线中含有六方相和立方相的InN晶体.这些InN纳米线具有良好的场发射特性和稳定的场发射电流,其开启场为10.02 V/μm(电流密度为10 μA/cm2),在24 V/μm 的电场下,其电流密度达到5.5 mA/cm2.此外,对InN纳米线的场发射机理也进行了讨论. 关键词: InN纳米线 场电子发射 非线性Fower-Nordheim曲线  相似文献   

17.
Local-oriented single-crystalline ZnO nanowires have been synthesized in large scale by a simple microemulsion method in the presence of sulfonate-polystyrene (S-PS) and dodecyl benzene sulfonic acid sodium salt (DBS). The as-prepared product is characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), infrared (IR) spectra and photoluminescence (PL) spectrum. The nanowires exhibit a local congregation and preferentially grow along the [0 0 2] facet. FT-IR spectrum indicates that S-PS is adsorbed on the surface of ZnO nanowires. The PL spectrum shows evidently red-shifted ultraviolet (UV) emission.  相似文献   

18.
Highly aligned Ag nanowires have been synthesized by dc electrodeposition within a hexagonal close-packed nanochannel anodic aluminum oxide template. The pore diameter varies from 20 nm to 50 nm depending on the anodization voltage and temperature for the two types of aqueous solutions, sulphuric and oxalic acids, respectively. The size and morphology of the Ag nanowire arrays were measured by scanning electron microscopy and transmission electron microscopy. The images indicate that the highly aligned Ag nanowires grow in the uniform nanochannels of the anodic alumina template and that the size of the nanowires depends on the size of the nanochannels. X-ray diffraction, selected area electron diffraction pattern and high-resolution transmission electron microscopy images show that the Ag nanowires are single-crystal. The temperature coefficient of resistivity (temperature range from 4.2 K to 300 K) of the Ag nanowire arrays decreases with decreasing diameter of the nanowires. Received: 5 November 2001 / Revised version: 12 March 2002 / Published online: 6 June 2002  相似文献   

19.
"采用电场辅助电化学沉积法,利用阳极氧化铝模板模板制备了高度择优取向的硫掺杂ZnO单晶纳米线.X射线衍射仪、隧道电子显微镜、选取电子衍射对所得样品的结构、形貌分析表明,所得纳米线是沿(101)择优取向的六方纤锌矿结构单晶纳米线,长约几十微米、平均直径约70 nm. X射线光电子能谱对化学组成的分析进一步证实掺杂硫原子的存在.用荧光光谱仪(PL)对S掺杂前后的ZnO纳米线进行光学特性测量发现,S掺杂较大地改变了ZnO纳米线的发光性质.在PL谱中,除了有典型的ZnO纳米线在378、392 nm处的强紫外发光峰  相似文献   

20.
在长度为20 cm的石英毛细管内利用两个边缘锋利的中空的针型电极之间的氩气放电产生了高电子密度的大气压等离子体。利用发射光谱对所获得的等离子体的几个重要参数进行了诊断。利用计算机谱线拟合法合成了300 nm附近OH(A-X)的(0-0)转动谱带并通过与测量谱线的比较确定了等离子体的气体温度,根据Hβ谱线Stark展宽法计算了等离子体的电子密度,采用玻尔兹曼曲线斜率法依据测得的有关氩的发射光谱估算了等离子体的电子温度。研究结果表明,这种石英毛细管内弧光放电等离子体的气体温度约为(1 100±50)K;电子密度数量级在1014 cm-3;电子温度约为(14 515±500)K。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号