首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
纳米金属Zn O作为界面缓冲材料能够有效提高基于有机金属卤化物-甲基碘化铵的钙钛矿(PVSK)太阳能电池的水氧稳定性,是溶液制备高稳定性钙钛矿太阳能电池的一个关键技术。而在器件的制备过程中,Zn O分散溶剂的渗透可能导致下层钙钛矿薄膜的结构物性发生变化,从而对器件性能造成显著的影响。为解决该问题,本文详细分析了不同极性有机溶剂对Zn O分散性的影响,研究了不同溶剂对PVSK/PCBM薄膜的吸收光谱和晶体结构的影响,最终获得了甲醇-正丁醇混合溶剂的体积比为1∶1、Zn O质量浓度为10 mg·m L-1的优化分散体系,为进一步开展全溶液法制备钙钛矿太阳能电池提供了重要指导。  相似文献   

2.
基于ABX3晶体结构材料的新型钙钛矿太阳能电池具有光电转换效率高、可溶液加工以及低温工艺兼容等优势。与此同时,利用钙钛矿材料合成方法简单、带隙可调以及膜厚和透过率可控等优点制备的半透明钙钛矿太阳能电池为薄膜光伏的发展带来了新的契机,在建筑集成光伏和叠层光伏等领域应用前景广阔。开发高效且高稳定的半透明钙钛矿太阳能电池已成为目前光伏领域的研究重点。本文系统综述了半透明钙钛矿太阳能电池的各功能层(钙钛矿光活性层、电荷传输层和电极)材料选择、光学特性调控、电学特性优化以及制备工艺调控等技术策略,同时提出了对半透明钙钛矿太阳能电池未来发展的一些展望。  相似文献   

3.
钙钛矿材料不仅具有载流子扩散长度长、可调节带隙宽、光吸收效率大等优点,并且其原料储量十分丰富,沉积过程所需的形成能较低,制备工艺可兼容大面积制造技术。总之,低生产成本、高转换效率和宽应用领域等优点使钙钛矿太阳能电池可与硅基太阳能电池相媲美,在能源生产中优势十分明显。在现阶段的钙钛矿研究中,高稳定性和大制备面积是钙钛矿光伏技术的研究热点,也是亟待突破的难点。本文综述了近年来采用印刷技术制备钙钛矿太阳能电池的原料组成、工艺控制等方面的研究进展,简述并比较了各种印刷技术的优点与局限性。重点讨论了钙钛矿太阳能电池印刷制备时需要考虑的因素,并列举了对于改善钙钛矿太阳能电池薄膜性能不同制备方法的尝试,评价了对于提高器件稳定性及工业生产适用性所采取的一些策略。  相似文献   

4.
电子传输层对于钙钛矿太阳能电池载流子的抽取与传输起着至关重要的作用,氧化锡由于其优异特性被作为电子传输层广泛应用于正式平板结构钙钛矿太阳能电池中。而目前制备氧化锡薄膜的工艺方法无法满足大面积、自动化等工业需求,亟待发掘新的工艺手段。为解决此问题,本文使用喷涂法成功制备了高质量的氧化锡薄膜。实验结果表明,基于喷涂法制备氧化锡薄膜的钙钛矿太阳能电池对于氧化锡薄膜的厚度有较高的依赖性,通过优化薄膜厚度,电池的光电转化效率可达到15. 72%;喷涂得到的氧化锡薄膜存在咖啡环现象,使得串联电阻提高,限制了光电转化效率,但可以通过进一步细化液滴来解决。本文为钙钛矿产业化进程中高质量氧化锡薄膜的制备提供了新的思路与方法。  相似文献   

5.
研究了吡啶作为添加剂对一步法制备甲胺铅碘钙钛矿太阳能电池光电性能的影响.利用SEM、AFM、XRD、UV-Vis、PL等手段研究了不同吡啶掺杂浓度对制备的CH3 NH3 PbI3薄膜的表面形貌、结晶度和光学性能的影响.研究结果表明:少量的吡啶掺杂可以提高钙钛矿薄膜的覆盖率及降低薄膜的表面粗糙度.当在CH3 NH3 PbI3前驱体溶液中添加体积分数为1%的吡啶时,制备的钙钛矿太阳能电池的能量转换效率达到7.33%,而未加吡啶的对比器件效率仅为1.01%.进一步添加吡啶会导致钙钛矿材料的降解.  相似文献   

6.
有机-无机钙钛矿材料是一种新兴的可溶液加工的薄膜太阳能电池材料.通过向钙钛矿中引入低维结构能够显著提高其材料稳定性和器件稳定性.首先,探究了一种双阳离子2, 2’-联咪唑(BIM)形成的铅基二维钙钛矿;然后,通过单晶衍射手段发现了一种新型的扭曲二维结构;最后,通过一步旋涂方法将这种扭曲二维结构引入到钙钛矿薄膜中,所得到的太阳能电池器件效率达14%,并且具有较好的稳定性.本文提供了一种新的钙钛矿薄膜的钝化体系,并且直接运用于太阳能电池器件的制备,为提高钙钛矿太阳能电池的稳定性提供了新的发展思路.  相似文献   

7.
由于具有高效率以及可溶液法制备等优点,钙钛矿太阳能电池受到了广泛关注。溶液法制备钙钛矿薄膜通常使用旋涂法。然而,溶液旋涂法具有厚度不均匀、原料浪费严重等缺点,因而不适合制备大面积钙钛矿薄膜。目前,制备大面积均匀的钙钛矿太阳能电池仍是一项挑战。为此,本文使用一种新方法(气相辅助刮刀涂布法)来克服这一问题。该方法能够制备出大面积、高结晶度的均匀钙钛矿薄膜。此外,通过改变前驱液的浓度,能够得到不同厚度的钙钛矿薄膜。进一步研究发现,当前驱溶液浓度为1. 0 M时,可以制备出光伏性能最佳的钙钛矿太阳能电池。当电池活性面积分别为0. 112 5 cm~2和1. 0 cm~2时,在AM1. 5G(100 mW/cm~2)模拟太阳光下,其光电转化效率的最高值为17. 76%(平均效率16. 9%)和16. 3%。这为大面积钙钛矿太阳能电池的制备提供了新思路。  相似文献   

8.
近年来有机-无机杂化钙钛矿材料因其吸收系数高、成本低廉、制备工艺简单等优点吸引了大批科研人员进行研究,目前在实验室制备的电池能量转换效率已经超过23%.钙钛矿太阳能电池一般采用溶液法逐层制备,在此过程中由于退火温度、结晶速率等因素的影响,钙钛矿内部以及界面会产生大量的缺陷,这些缺陷会增加载流子复合概率,降低载流子寿命,严重影响钙钛矿太阳能电池的性能.因此研究和理解钙钛矿的缺陷对制备高效钙钛矿太阳能电池至关重要.本文讨论了在正式结构中,钙钛矿太阳能电池缺陷的产生以及缺陷对钙钛矿太阳能电池的影响,分析了不同材料钝化电子传输层/钙钛矿层界面以及钙钛矿层/空穴传输层界面缺陷的机理,对比了不同钝化材料对钙钛矿太阳能电池光伏性能的影响,总结了界面钝化材料在钙钛矿太阳能电池中的作用.最后指出了钙钛矿太阳能电池钝化缺陷的研究趋势和发展方向.  相似文献   

9.
太阳能光伏技术,能实现太阳能与电能的高效转换,是实现人类文明可持续发展的关键绿色能源技术.其中,有机无机杂化钙钛矿太阳能电池具有优异的光电特性、低廉的制备成本、高效的转换效率,已成为该领域的研究前沿.虽然有机无机杂化钙钛矿太阳能电池的光电转换效率已约高达24%,但其体系中的有机物组分易受环境中的光、热、潮等因素影响而分解,致使器件稳定性存在严重的缺陷,极大地限制了钙钛矿太阳能电池的产业化进程.因此,如何制备高效稳定的钙钛矿太阳能电池,是目前该领域的研究热点与难点,而发展具有更高环境稳定性的全无机钙钛矿太阳能电池具有重要意义.本文回顾了近年来全无机钙钛矿太阳能电池领域的研究成果,重点审视了钙钛矿薄膜的湿法制备工艺,并探讨了器件在光热稳定性方面的改善,为进一步推动钙钛矿太阳能电池的实用化进程提供可行性参考.  相似文献   

10.
研究了吡啶作为添加剂对一步法制备甲胺铅碘钙钛矿太阳能电池光电性能的影响。利用SEM、AFM、XRD、UV-Vis、PL等手段研究了不同吡啶掺杂浓度对制备的CH_3NH_3Pb I_3薄膜的表面形貌、结晶度和光学性能的影响。研究结果表明:少量的吡啶掺杂可以提高钙钛矿薄膜的覆盖率及降低薄膜的表面粗糙度。当在CH_3NH_3Pb I_3前驱体溶液中添加体积分数为1%的吡啶时,制备的钙钛矿太阳能电池的能量转换效率达到7.33%,而未加吡啶的对比器件效率仅为1.01%。进一步添加吡啶会导致钙钛矿材料的降解。  相似文献   

11.
Yu Zhan 《中国物理 B》2021,30(8):88803-088803
Formamidinium lead triiodide (FAPbI3) is a research hotspot in perovskite photovoltaics due to its broad light absorption and proper thermal stability. However, quite a few researches focused on the stability of the FAPbI3 perovskite precursor solutions. Besides, the most efficient FAPbI3 layers are prepared by the spin-coating method, which is limited to the size of the device. Herein, the stability of FAPbI3 perovskite solution with methylammonium chloride (MACl) or cesium chloride (CsCl) additive is studied for preparing perovskite film through an upscalable blade-coating method. Each additive works well for achieving a high-quality FAPbI3 film, resulting in efficient carbon electrode perovskite solar cells (pero-SCs) in the ambient condition. However, the perovskite solution with MACl additive shows poor aging stability that no α-FAPbI3 phase is observed when the solution is aged over one week. While the perovskite solution with CsCl additive shows promising aging stability that it still forms high-quality pure α-FAPbI3 perovskite film even the solution is aged over one month. During the solution aging process, the MACl could be decomposed into methylamine which will form some unfavored intermediated phase inducing δ-phase FAPbI3. Whereas, replacing MACl with CsCl could effectively solve this issue. Our founding shows that there is a great need to develop a non-MACl FAPbI3 perovskite precursor solution for cost-effective preparation of pero-SCs.  相似文献   

12.
陈亮  张利伟  陈永生 《物理学报》2018,67(2):28801-028801
基于有机-无机杂化卤化铅材料的钙钛矿太阳电池的转换效率在短短几年内已迅速突破22%,为未来能源问题的解决带来了曙光,同时也引起了高度重视.但紧随其后的商品化、产业化发展需求极大地增加了对绿色、无毒的高效无铅钙钛矿太阳电池进行研究和开发的重要性和紧迫性.为进一步加快环境友好型钙钛矿太阳电池的研发进度,对目前无铅和少铅钙钛矿太阳电池的发展现状进行了综述.着重讨论了替代元素种类及其浓度、制备工艺等对薄膜和电池性能的影响,以期对电池的工作机理、替代元素的作用机理有更加深刻的认识,为新型环保、高效的钙钛矿太阳电池的制备提供指导.  相似文献   

13.
A star hybrid inorganic-organic perovskite material selected as an outstanding absorbing layer in solar cells benefits from multiple preparation techniques and excellent photoelectric characteristics. Among numerous synthetic processes,uniform, compact, and multi-stack perovskite thin films can be manufactured using vacuum deposition. During sequential vacuum deposition, the penetration ability of the organic molecules cannot be effectively controlled. In addition, the relationship between the thickness of the inorganic seeding layer and the organic molecule concentration for optimized devices using an evaporation-solution method is unclear. In this work, we prepared high-quality perovskite films by effectively controlling the penetration ability and chemical quantity of organic methyl ammonium iodide by monitoring the evaporation pressure and time. Thus, a device efficiency of over 15% was achieved with an all-vacuum prepared perovskite film. For the evaporation-solution method, we reacted different thicknesses of inorganic lead iodine with various concentrations of the organic molecule solution. The inorganic layer thickness and organic molecule concentration showed a linear relationship to achieve an optimum perovskite film, and an empirical formula was obtained. This work noted the key parameters of two intercalation reactions to prepare perovskite films, which paves a way to deliver a device that enables multi-layered structures, such as tandem solar cells.  相似文献   

14.
王军霞  毕卓能  梁柱荣  徐雪青 《物理学报》2016,65(5):58801-058801
新型碳材料如石墨烯及其氧化物、碳纳米管、富勒烯及石墨炔等因其优异的热学、力学、电学、光学性能成为了钙钛矿太阳电池研究的又一亮点. 本文总结了新型碳材料在钙钛矿太阳电池对电极、电子传输材料及空穴传输材料中的研究进展, 新型碳材料的引入有效地提高了钙钛矿电池的性能, 为下一步新型碳材料的应用开发以及钙钛矿电池器件的研究提供了新的思路.  相似文献   

15.
Morphology and surface property of ZnO thin films as electron transporting layer in perovskite solar cells are crucial for obtaining high-efficient and stable perovskite solar cells. In this work, two different preparation methods of ZnO thin films were carried out and the photovoltaic performances of the subsequent perovskite solar cells were investigated. ZnO thin film prepared by sol–gel method was homogenous but provided high series resistance in solar cells, leading to low short circuit current density. Lower series resistance of solar cell was obtained from homogeneous ZnO thin film from spin-coating of colloidal ZnO nanoparticles (synthesized by hydrolysis–condensation) in a mixture of 1-butanol, chloroform and methanol. The perovskite solar cells using this film achieved the highest power conversion efficiency (PCE) of 4.79% when poly(3-hexylthiophene) was used as a hole transporting layer. In addition, the stability of perovskite solar cells was also examined by measuring the photovoltaic characteristic for six consecutive weeks with the interval of 2 weeks. It was found that using double layers of the sol–gel ZnO and ZnO nanoparticles provided better stability with no degradation of PCE in 10 weeks. Therefore, this work provides a simple method for preparing homogeneous ZnO thin films in order to achieve stable perovskite solar cells, also for controlling their surface properties which help better understand the characteristics of perovskite solar cells.  相似文献   

16.
范伟利  杨宗林  张振雲  齐俊杰 《物理学报》2018,67(22):228801-228801
碳基钙钛矿太阳能电池因稳定性高、成本低廉而备受关注,但由于钙钛矿与碳电极之间能级匹配度不高,界面阻力大而导致效率不及金属基钙钛矿太阳能电池.本文制备了碳基无空穴传输层FTO/c-TiO2/m-TiO2/CH3NH3PbI3/Carbon电池结构.通过对介孔二氧化钛层、钙钛矿层厚度进行优化,并对钙钛矿的薄膜形貌及钙钛矿激发电子寿命、可见光吸收度、载流子的提取与分离等进行深度分析,讨论了电池效率提升的内在机理.当介孔氧化钛层和钙钛矿层达到最优厚度时,钙钛矿太阳能电池获得了开路电压(Voc)为0.93 V、电流密度(Jsc)为21.75 mA/cm2、填充因子为55%、光电转化效率达到11.11%.同时对电池进行了稳定性研究,在室温湿度为40%–50%的条件下放置15 d电池性能依旧稳定保持原来的95%,优于金属基钙钛矿太阳能电池,从而为碳电极钙钛矿太阳能电池的商业化发展提供了可能.  相似文献   

17.
钙钛矿薄膜的气相制备是一种极具潜力的工业化生产工艺,但薄膜的质量控制目前远落后于溶液制备法.本文通过建立PbI_2薄膜向钙钛矿薄膜完全转化过程中反应时间、晶粒尺寸与温度的关系,实现了薄膜的质量优化及大面积钙钛矿薄膜的制备,将薄膜的平均晶粒粒径从0.42μm优化到0.81μm.基于空间电荷限制电流模型对缺陷密度的研究显示,钙钛矿薄膜的缺陷密度由5.90×10~(16)cm~(–3)降低到2.66×10~(16)cm~(–3).光伏器件(FTO/TiO_2/C_(60)/MAPbI_3/spiro-OMeTAD/Au结构)测试显示,面积为0.045cm~2器件的平均光电转换效率从14.00%提升到17.42%,最佳光电转换效率达到17.80%,迟滞因子减小至4.04%.同时,基于180℃制备的1cm~2器件的光电转换效率达到13.17%.  相似文献   

18.
基于有机-无机杂化钙钛矿材料的太阳电池具有能量转换效率高和制备工艺简单等优点,引起了学术界的高度关注.其中平面异质结结构太阳电池具有结构简单,可与其他类型电池相兼容以构筑叠层电池设计,以及可低温制备等诸多优点,成为当前的一个重要研究方向.然而,电池性能的优劣与钙钛矿薄膜质量的高低有着直接的联系.本文对钙钛矿材料的特性、一步溶液法制备薄膜的成核-生长机理、电池结构的演变等进行了概述,其中重点介绍了高质量钙钛矿薄膜溶液法制备过程的一些最新的质量控制方法;最后对钙钛矿太阳电池的发展及存在问题进行了总结和展望,为今后的研究提供参考.  相似文献   

19.
目前,钙钛矿太阳能电池的光电转换效率已超过25%,飞速提升的效率使得人们越来越期待商业化的应用,但钙钛矿材料的稳定性问题却是其商业化所面临的最大挑战,准二维钙钛矿有望解决这一问题。利用大的有机间隔阳离子的疏水性和热稳定性,以及更高的晶体形成能和更加稳固的结构,准二维钙钛矿能够有效提高钙钛矿的稳定性。此外,准二维钙钛矿对钙钛矿薄膜的形态也具有明显的改善作用,可代替反溶剂工程,简化工艺,满足钙钛矿的工业化生产要求。然而,由于绝缘的有机间隔阳离子导致的相对大的带隙和低的载流子迁移率,阻碍了载流子传输,准二维钙钛矿太阳能电池的效率仍然与三维钙钛矿相差较大。因此,对于准二维钙钛矿,必须对其特性和器件应用等进行深入研究,以进一步优化器件性能。本文总结了准二维钙钛矿太阳能电池的研究进展,归纳了准二维钙钛矿的分子结构、准二维结构提升三维钙钛矿稳定性的方法和原理、准二维钙钛矿的相分布及其载流子传输特性,分析了准二维钙钛矿太阳能电池目前面临的问题并对其前景进行了展望,期望为制备高效稳定的准二维钙钛矿太阳能电池提供参考。  相似文献   

20.
溶剂对钙钛矿太阳能电池器件有着至关重要的影响. 基于目前常用的N, N-二甲基甲酰胺(DMF)和丁内酯(GBL)溶剂, 一步溶液旋涂技术和介孔电池结构, 制备的钙钛矿薄膜的形貌、结晶性, 以及最终的器件光电转化效率存在较大的差异, 利用DMF作为溶剂, 效率仅为2.8%, 而基于GBL的电池效率可以达到10.1%. 结合SEM, HRTEM, XRD和UV等表征手段, 分析了钙钛矿从DMF溶液和GBL溶液中结晶析出的不同机理, 明确了溶剂跟PbI2的配位作用对钙钛矿的溶解、析出过程的制约作用, 揭示了造成器件效率差异的本质原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号