首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 363 毫秒
1.
We theoretically present a scheme to realize the scalable geometric quantum computing with Cooper-pair box (CPB) qubits in circuit QED. A one-dimensional transmission line resonator in circuit QED acting as quantum data bus generates a common cavity mode and interacts with each CPB. It is found that the interqubit couplings between any pair of qubits are switchable by individually adjusting the gate pulses applied to the selected CPBs. In this proposed scheme, we can both controllably and selectively address logic gates in geometric scenarios, which opens the possibility to implement the scalable fault-tolerant quantum computing with Josephson qubits.  相似文献   

2.
马鸿洋  秦国卿  范兴奎  初鹏程 《物理学报》2015,64(16):160306-160306
提出和研究了噪声情况下的量子网络直接通信. 通信过程中所有量子节点共享多粒子Greenberger-Horne-Zeilinger (GHZ)量子纠缠态; 发送节点将手中共享的GHZ态的粒子作为控制比特、传输秘密信息的粒子作为目标比特, 应用控制非门(CNOT)操作; 每个接收节点将手中共享GHZ 态的粒子作为控制比特、接收到的秘密信息粒子作为目标比特, 再次应用CNOT门操作从而获得含误码的秘密信息. 每个接收节点从秘密信息中提取部分作为检测比特串, 并将剩余的秘密信息应用奇偶校验矩阵纠正其中存在的比特翻转错误, 所有接收节点获得纠正后的秘密信息. 对协议安全、吞吐效率、通信效率等进行了分析和讨论.  相似文献   

3.
We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained.The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced.The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.  相似文献   

4.
We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained. The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced. The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.  相似文献   

5.
We propose a quantum error-rejection scheme for direct communication with three-qubit quantum codes based on the direct communication of secret messages without any secret key shared in advance. Given the symmetric and independent errors of the transmitted qubits, our scheme can tolerate a bit of error rate up to 33.1%, thus the protocol is deterministically secure against any eavesdropping attack even in a noisy channel.  相似文献   

6.
吴超  方卯发  肖兴  李艳玲  曹帅 《中国物理 B》2011,20(2):20305-020305
A scheme is proposed where two superconducting qubits driven by a classical field interacting separately with two distant LC circuits connected by another LC circuit through mutual inductance,are used for implementing quantum gates.By using dressed states,quantum state transfer and quantum entangling gate can be implemented.With the help of the time-dependent electromagnetic field,any two dressed qubits can be selectively coupled to the data bus (the last LC circuit),then quantum state can be transferred from one dressed qubit to another and multi-mode entangled state can also be formed.As a result,the promising perspectives for quantum information processing of mesoscopic superconducting qubits are obtained and the distributed and scalable quantum computation can be implemented in this scheme.  相似文献   

7.
Dayue Qin 《中国物理 B》2022,31(9):90306-090306
Minimizing the effect of noise is essential for quantum computers. The conventional method to protect qubits against noise is through quantum error correction. However, for current quantum hardware in the so-called noisy intermediate-scale quantum (NISQ) era, noise presents in these systems and is too high for error correction to be beneficial. Quantum error mitigation is a set of alternative methods for minimizing errors, including error extrapolation, probabilistic error cancellation, measurement error mitigation, subspace expansion, symmetry verification, virtual distillation, etc. The requirement for these methods is usually less demanding than error correction. Quantum error mitigation is a promising way of reducing errors on NISQ quantum computers. This paper gives a comprehensive introduction to quantum error mitigation. The state-of-art error mitigation methods are covered and formulated in a general form, which provides a basis for comparing, combining and optimizing different methods in future work.  相似文献   

8.
The smallest quantum code that can correct all one-qubit errors is based on five qubits. We experimentally implemented the encoding, decoding, and error-correction quantum networks using nuclear magnetic resonance on a five spin subsystem of labeled crotonic acid. The ability to correct each error was verified by tomography of the process. The use of error correction for benchmarking quantum networks is discussed, and we infer that the fidelity achieved in our experiment is sufficient for preserving entanglement.  相似文献   

9.
We describe a quantum error correction scheme aimed at protecting a flow of quantum information over long distance communication. It is largely inspired by the theory of classical convolutional codes which are used in similar circumstances in classical communication. The particular example shown here uses the stabilizer formalism. We provide an explicit encoding circuit and its associated error estimation algorithm. The latter gives the most likely error over any memoryless quantum channel, with a complexity growing only linearly with the number of encoded qubits.  相似文献   

10.
This paper presents a spatial domain quantum watermarking scheme. For a quantum watermarking scheme, a feasible quantum circuit is a key to achieve it. This paper gives a feasible quantum circuit for the presented scheme. In order to give the quantum circuit, a new quantum multi-control rotation gate, which can be achieved with quantum basic gates, is designed. With this quantum circuit, our scheme can arbitrarily control the embedding position of watermark images on carrier images with the aid of auxiliary qubits. Besides reversely acting the given quantum circuit, the paper gives another watermark extracting algorithm based on quantum measurements. Moreover, this paper also gives a new quantum image scrambling method and its quantum circuit. Differ from other quantum watermarking schemes, all given quantum circuits can be implemented with basic quantum gates. Moreover, the scheme is a spatial domain watermarking scheme, and is not based on any transform algorithm on quantum images. Meanwhile, it can make sure the watermark be secure even though the watermark has been found. With the given quantum circuit, this paper implements simulation experiments for the presented scheme. The experimental result shows that the scheme does well in the visual quality and the embedding capacity.  相似文献   

11.
A one‐step scheme is presented to construct the controlled‐phase gate deterministically on remote transmon qutrits coupled to different resonators connected by a superconducting transmission line for an universal distributed quantum computing. Different from previous work on remote superconducting qubits, the present gate is implemented with coherent evolutions of the entire system in the all‐resonance regime assisted by the dark photons to robust against the transmission line loss, which allows the possibility of the complex designation of a long‐length transmission line to link lots of circuit QEDs. The length of the transmission line can reach the scale of several meters, which makes this scheme suitable for large‐scale distributed quantum computing. This gate is a fast quantum entangling operation with a high fidelity of about 99%. Compared with previous work in other quantum systems for a distributed quantum computing, under the all‐resonance regime, the present proposal does not require classical pulses and ancillary qubits, which relaxes the difficulty of its implementation largely.  相似文献   

12.
吴向艳  徐艳玲  於亚飞  张智明 《物理学报》2014,63(22):220304-220304
Non-Clifford操作不能在量子纠错码上自然横向实现, 但可通过辅助量子态和在量子纠错码上能横向实现的Clifford操作来容错实现, 从而取得容错量子计算的通用性. 非平庸的单量子比特操作是Non-Clifford操作, 可以分解为绕z轴和绕x轴非平庸旋转操作的组合. 本文首先介绍了利用非稳定子态容错实现绕z轴和绕x轴旋转的操作, 进而设计线路利用魔幻态容错制备非稳定子态集, 最后讨论了运用制备的非稳定子态集模拟任意非平庸单量子比特操作的问题. 与之前工作相比, 制备非稳定子态的线路得到简化, 成功概率提高, 且在高精度模拟任意单量子比特操作时所消耗的非稳定子态数目减少了50%. 关键词: 容错量子计算 非稳定子态 魔幻态 Clifford操作  相似文献   

13.
《中国物理 B》2021,30(8):80304-080304
Superconducting circuits based on Josephson junctions are regarded as one of the most promising technologies for the implementation of scalable quantum computers. This review presents the basic principles of superconducting qubits and shows the progress of quantum computing and quantum simulation based on superconducting qubits in recent years.The experimental realization of gate operations, readout, error correction codes, as well as some quantum algorithms are summarized, followed by an introduction of quantum simulation. And then some important applications in fields including condensed matter physics, quantum annealing, and quantum chemistry are discussed.  相似文献   

14.
刘凯  李文东  张闻钊  史鹏  任春年  顾永建 《物理学报》2012,61(12):120301-120301
受到Lanyon等(Lanyon B P et al 2008 Nature Physics. 5 134)利用高维Hilbert空间成功简化Toffoli门的启发, 本文将辅助维度应用到普适量子线路中, 结合Cosine-Sine Decomposition(CSD), Quantum Shannon Decomposition(QSD)等矩阵分解方法, 优化了两比特和三比特普适幺正量子线路, 给出了计算n比特普适量子线路复杂度的公式, 并利用线性光学和腔QED系统设计了实验方案. 结果表明, 两比特和三比特量子线路的复杂度已分别接近和优于目前最优结果, 且随着比特数的增加, 本方案的优势愈加明显.  相似文献   

15.
Zheng-Yin Zhao 《中国物理 B》2021,30(8):88501-088501
Construction of optimal gate operations is significant for quantum computation. Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynamics (QED). Two four-level artificial atoms of Cooper-pair box circuits, having sufficient level anharmonicity, are placed in a common quantized field of circuit QED and are driven by individual classical microwaves. Without the effect of cross resonance, one-qubit NOT gate and phase gate in a decoupled atom can be implemented using the invariant-based shortcuts to adiabaticity. With the assistance of cavity bus, a one-step SWAP gate can be obtained within a composite qubit-photon-qubit system by inversely engineering the classical drivings. We further consider the gate realizations by adjusting the microwave fields. With the accessible decoherence rates, the shortcut-based gates have high fidelities. The present strategy could offer a promising route towards fast and robust quantum computation with superconducting circuits experimentally.  相似文献   

16.
量子Turbo乘积码   总被引:1,自引:0,他引:1       下载免费PDF全文
肖海林  欧阳缮  谢武 《物理学报》2011,60(2):20301-020301
量子通信是经典通信和量子力学相结合的一门新兴交叉学科.量子纠错编码是实现量子通信的关键技术之一.构造量子纠错编码的主要方法是借鉴经典纠错编码技术,许多经典的编码技术在量子领域中都可以找到其对应的编码方法.针对经典纠错码中最好码之一的Turbo乘积码,提出一种以新构造的CSS型量子卷积码为稳定子码的量子Turbo乘积码.首先,运用群的理论及稳定子码的基本原理构造出新的CSS型量子卷积码稳定子码生成元,并描述了其编码网络.接着,利用量子置换SWAP门定义推导出量子Turbo乘积码的交织编码矩阵.最后,推导出量子Turbo乘积码的译码迹距离与经典Turbo乘积码的译码距离的对应关系,并提出量子Turbo乘积码的编译码实现方案.这种编译码方法具有高度结构化,设计思路简单,网络易于实施的特点. 关键词: CSS码 量子卷积码 量子Turbo乘积码 量子纠错编码  相似文献   

17.
Quantum computation can be performed by encoding logical qubits into the states of two or more physical qubits, and control of effective exchange interactions and possibly a global magnetic field. This "encoded universality" paradigm offers potential simplifications in quantum computer design since it does away with the need to control physical qubits individually. Here we show how encoded universality schemes can be combined with fault-tolerant quantum error correction, thus establishing the scalability of such schemes.  相似文献   

18.
We present a scheme of fault-tolerant quantum computation for a local architecture in two spatial dimensions. The error threshold is 0.75% for each source in an error model with preparation, gate, storage, and measurement errors.  相似文献   

19.
《中国物理 B》2021,30(6):60312-060312
Measurement-based quantum computation with continuous variables, which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state, provides a feasible way to implement quantum computation. Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication. In this review, we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states. We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.  相似文献   

20.
We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the course of the computation; (3) It is resource efficient and conceptually simple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号