首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用多种X射线衍射技术和磁电阻测量技术研究了不同厚度的La0.8Ca0.2MnO3/SrTiO3 (LCMO/STO)薄膜的应变状态及其对磁电阻性能的影响.结果表明,在STO(001)单晶衬底上生长的LCMO薄膜沿[00l]取向生长.LCMO薄膜具有伪立方钙钛矿结构,随着薄膜厚度的增加,面内晶格参数增加,垂直于面内的晶格参数减小,晶格参数ab相近,略小于c.LC 关键词: X射线衍射 微结构 应变 物理性能  相似文献   

2.
The influence of Tb25Fe61Co14 thin film thicknesses varying from 2 to 300 nm on the structural and magnetic properties has been systematically investigated by using of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, magnetization, and magneto-optic Kerr effect microscopy measurements. Thin film growth mechanism is pursued and controlled by ex-situ X-ray refractometry measurements. X-ray diffraction studies reveal that the Tb25Fe61Co14 films are amorphous regardless of thin films thicknesses. The magnetic properties are found to be strongly related to thickness and preferred orientation. With an increase in film thickness, the easy axis of magnetization is reversed from in-plane to out-of-plane direction. The change in the easy axes direction also affects the remanence, coercivity and magnetic anisotropy values. The cause for the magnetic anisotropy direction change from in-plane to out-of-plane can be related to the preferred orientation of the thin film which depends on the large out-of-plane coercivity and plays an important role in deciding the easy axes direction of the films. According to our results, up to the 100 nm in-plane direction is dominated over the whole system under major Fe-Fe interaction region, after that point, the magnetic anisotropy direction change to the out-of-plane under major Tb-Fe/Tb-Co interaction region and preferred orientation dependent perpendicular magnetic anisotropic properties become more dominated with 2.7 kOe high coercive field values.  相似文献   

3.
In this study, the influences of thin film thickness and post-annealing process on the magnetic properties of CoFeB thin films were investigated. The angular dependency and linewidth of the ferromagnetic resonance signal were used to explore the magnetic behavior of sputtered single-layer and trilayer thin film stacks of CoFeB. A micromagnetic simulation model was employed based on the metropolis algorithm comprising the demagnetizing field and in-plane induced uniaxial anisotropy terms with all relevant contributions. Our results reveal that the direction of magnetization changes from in-plane to out-of-plane as a result of the annealing process and induces a perpendicular magnetic anisotropy in the 1-nm thick CoFeB thin film. The ferromagnetic resonance (FMR) linewidth can be defined well by the intrinsic Gilbert damping effect and the magnetic inhomogeneity contribution in both as-grown and annealed samples. The difference between the linewidths of the single and trilayer film is mainly caused by the spin pumping effect on damping which is associated with the interface layers.  相似文献   

4.
High-frequency characteristics of CoFeVAlONb thin films were studied. A thin film of Co43.47Fe35.30V1.54Al5.55O9.93Nb4.21 is observed to exhibit excellent magnetic properties; magnetic coercivity of 1.24 Oe, uniaxial in-plane anisotropy field of 66.99 Oe, and saturation magnetization of 19.8 kG. The effective permeability of the film is as high as 1089 and is stable up to 1.8 GHz, and with ferromagnetic resonance over 3 GHz. This film also has very high electrical resistivity of about 628 μΩ cm. These superior properties make it ideal for high-frequency magnetic applications.  相似文献   

5.
The magnetic properties of a ferromagnetic thin film of face centered cubic (FCC) lattice with Heisenberg spin-S are examined using the high-temperature series expansions technique extrapolated with Padé approximations method. The critical reduced temperature of the system τc is studied as function of thickness of the film and the exchange interactions in the bulk, and within the surfaces Jb, Js and J respectively. A critical value of surface exchange interaction above which surface magnetism appears is obtained. The dependence of the reduced critical temperature on the film thickness L has been investigated.  相似文献   

6.
《Current Applied Physics》2015,15(3):194-200
BiFeO3 (BFO) thin films with thickness increasing from 40 to 480 nm were successfully grown on LaNiO3 (LNO) buffered Pt/Ti/SiO2/Si(100) substrate and the effects of thickness evolution on magnetic and ferroelectric properties are investigated. The LNO buffer layer promotes the growth and crystallization of BFO thin films. Highly (100) orientation is induced for all BFO films regardless of the film thickness together with the dense microstructure. All BFO films exhibited weak ferromagnetic response at room temperature and saturation magnetization is found to decrease with increase in film thickness. Well saturated ferroelectric hysteresis loops were obtained for thicker films; however, the leakage current dominated the ferroelectric properties in thinner films. The leakage current density decreased by three orders of magnitude for 335 nm film compared to 40 nm film, giving rise to enhanced ferroelectric properties for thicker films. The mechanisms for the evolution of ferromagnetic and ferroelectric characteristics are discussed.  相似文献   

7.
《Current Applied Physics》2010,10(3):821-824
We have studied the effect of thickness on the structural, magnetic and electrical properties of La0.7Ca0.3MnO3 thin films prepared by pulsed laser deposition method using X-ray diffraction, electrical transport, magneto-transport and dc magnetization. X-ray diffraction pattern reflects that all films have c-axis epitaxial growth on LaAlO3 substrate. The decrease in out-of-plane cell parameter specifies a progressive relaxation of in the plane compressive strain as the film thickness is increases. From the dc magnetization measurements, it is observed that ferromagnetic to paramagnetic transition temperature increases with increase in the film thickness. Magneto-resistance and temperature coefficient of resistance increases with film thickness and have maximum value near its metal to insulator transition temperature.  相似文献   

8.
Co2MnGe films of 30 and 50 nm in thickness were grown by RF-sputtering. Their magnetic anisotropies, dynamic properties and the different excited spin wave modes have been studied using conventional ferromagnetic resonance (FMR) and Microstrip line FMR (MS-FMR). From the in-plane and the out-of-plane resonance field values, the effective magnetization (4πMeff) and the g-factor are deduced. These values are then used to fit the in-plane angular-dependence of the uniform precession mode and the field-dependence of the resonance frequency of the uniform mode and the first perpendicular standing spin wave to determine the in-plane uniaxial, the four-fold anisotropy fields, the exchange stiffness constant and the magnetization at saturation. The samples exhibit a clear predominant four-fold magnetic anisotropy besides a smaller uniaxial anisotropy. This uniaxial anisotropy is most probably induced by the growth conditions.  相似文献   

9.
Transport properties of a magnetic barrier in a GaxAl1−xAs based two-dimensional hole gas are reported. A ferromagnetic cobalt film, separated by an AlOx layer from the semiconductor in order to prevent leakage currents, is magnetized in-plane, such that the fringe field generates a localized perpendicular magnetic field acting as a magnetic barrier. The resistance as a function of the in-plane magnetic field shows a characteristic minimum at the coercive field of the ferromagnetic film. Semiclassical simulations based on the Landauer–Büttiker formalism show good agreement with the experiment.  相似文献   

10.
《Current Applied Physics》2014,14(4):548-551
This study examined the magnetization reversal effects on low-field microwave absorption in a Fe91.6B2.5N5.9 single layered film with in-plane uniaxial magnetic anisotropy and a multi-layered film with giant magnetoresistivity using ferromagnetic resonance measurements at 9.84 GHz. Two different kinds of absorption modes were observed at near zero dc field and high dc field. The signals at high-field showed all the features of ferromagnetic resonance due to spin precession. However, the absorption signals at low-field should be associated with the switching field at unsaturated magnetic field region.  相似文献   

11.
We recently reported a possible antiferromagnetically coupled phase in a Co-rich CoFeSiB thin film, that had a partially nanocrystalline Co phase in an amorphous CoFeSiB matrix. Although an amorphous CoFeSiB film should show a ferromagnetic behavior, we observed an antiferromagnetic coupling associated with a nanocrystalline Co phase in the hysteresis-loop measurements of Co-rich CoFeSiB thin films. We ascribed the observed antiferromagnetic coupling to dense stripe domains consisting of periodically up and down domains perpendicular to the surface of the film. The configuration of the stripe domains was confirmed with magnetic force microscopy images. When a longitudinal magnetic field was applied, the size of the stripe domain was reduced. While for a transverse field, the domain structure became tilted and zigzagged, but no in-plane magnetic anisotropy was noted. When the magnetic field was increased to values above the saturation magnetic field, HS = 2.5 kOe, the domain structure disappeared.  相似文献   

12.
The thickness-dependent dielectric properties and tunability of pulsed laser deposited (Ba0.5Sr0.5)0.925K0.075TiO3 (BSKT) thin films with different thickness ranging from 80 to 300 nm has been investigated. Dielectric properties of the BSKT thin films are substantially improved as the BSKT film thickness increases, which can be explained by the model of a low-permittivity dead layer that is connected in series with the bulk region of the film. The estimated values of thickness and the average dielectric constant for the dead layer are 2.4 nm and 23.5, respectively, in a Pt/BSKT/Pt capacitor structure. The tunability and figure of merit increased with increasing film thickness, which are attributed to the change in lattice parameter and the dead layer effect.  相似文献   

13.
The effect of BaZrO3 (BZO) doping is systematically studied in YBa2Cu3O6+x (YBCO) thin films deposited by pulsed laser deposition (PLD) on buffered NiW substrates. Based on the structural and magnetic properties, the optimal BZO doping concentration is obtained to vary between 4 and 7.5 wt.%, depending mainly on applied magnetic field. This relatively high optimal concentration is linked to the nanograined target material and metal substrate that cause low-angle grain-boundaries and in-plane spread of YBCO crystals on NiW. Thickness dependent analysis of undoped and BZO-doped YBCO films predicts differences in growth mechanisms where early growth next to the substrate interface is 2D-type in BZO-doped films. This leads to the situation where crystallographic structure as well as superconducting properties are improved when the film develops and the thickness is increased. Therefore from the resistivity measurements a threshold thicknesses where reasonable properties occur are determined for both set of films. Measurements in thermally activated flux-flow regime (TAFF) indicate that above the threshold thickness relatively strong and isotropic vortex pinning is realized in BZO-doped YBCO films. Generally, this paper demonstrates that especially for thin film applications on NiW substrates even more compatible buffer layer structures should be utilized.  相似文献   

14.
Nearly 50-nm thick La0.7Sr0.3MnO3 (LSMO) films were grown on Si substrates using molecular beam epitaxy on (001) Si substrates over-layered by a 20 nm thick SrTiO3 (STO) or by a 20 nm thick CaTiO3 (CTO) film. In addition, a reference LSMO film was directly deposited on a (001) STO substrate by pulsed laser deposition. For all the samples, X-ray diffraction revealed an excellent epitaxy of the LSMO film and small mosaicity around (001), with in-plane [100] and [010] cubic axes. The LSMO/CTO films are in-plane compressed while the LSMO/STO ones are in-plane extended. The temperature dependence of their static magnetic properties was studied using a SQUID, showing a Curie temperature overpassing 315 K for all the samples. Hysteresis loops performed at room temperature (294 K) with the help of a vibrating sample magnetometer (VSM) are also discussed. At 294 K Micro-strip ferromagnetic resonance (MS-FMR) was used to investigate the dynamic magnetic properties. It allows concluding to a strong anisotropy perpendicular to the films and to a weak fourfold in-plane anisotropy with easy axes along the [110] and [1[`1]0 1\bar{1}0 ] directions. Their values strongly depend on the studied sample and are presumably related to the strains suffered by the films.  相似文献   

15.
This is a complex study of the electrophysical and magnetic characteristics of epitaxial manganite La0.7Ba0.3MnO3 (LBMO) films under conditions of crystal structure stresses caused by misfit in the lattice parameters of the LBMO crystal and a substrate. The substrate used had the lattice parameter smaller than that in the LBMO crystal. It is shown that the temperature dependence of the electrical resistance of the films at low temperatures is not dependent on the existence of stresses in the film and agrees well with the calculation with allowance made for the interaction of carriers with magnetic excitations in the presence of strongly correlated electronic states. The study of the ferromagnetic resonance line indicates an inhomogeneity of the ferromagnetic phase in the LBMO films and the increase in the ferromagnetic resonance line width with decreasing temperature.  相似文献   

16.
In this work we calculate heat capacity of alloy thin films of FeCo on the surface of the plane (110), using three parameters, the concentration x(i), the lattice long range order parameter t(i) and the magnetic order parameter σ(i), being i the number of layers of the thin film. The formulations reported by Hill [1] in the context of small particles and Valenta's model [2] can be applied to the film structure when we treat a thin film as a system divided into subsystems equivalent to two-dimensional parallel layers. The FeCo bulk alloy is completely homogeneous while a thin film have spatial discontinuities in their surfaces. We consider three ferromagnetic thin films formed by 11, 15 and 19 layers in the Helmholtz's free energy, which is minimized applying their first partial derivatives with respect to chemical composition, long range order parameter and magnetic order parameter. We calculate internal energy and heat capacity as a function of temperature and we verify that have two jumps as are reported in literature for the bulk; there are many results of bulk or surface effects of FeCo, but no enough results about ferromagnetic FeCo thin films and this fact does this work interesting.  相似文献   

17.
The effects of magnetic layer thickness on film structural and magnetic properties were studied systematically with emphasis on the thermal effects on thin recording media films. X-ray diffraction measurements reveal structural changes as thickness decreases, and the existence of a “Cr enriched phase” associated with the interface. The saturation magnetization Ms decreases with thickness and the thickness of the “dead layer” was found to be ∼23 Å. Systematic measurements of effective anisotropy, coercivity and saturation magnetization as functions of temperature have been carried out. Magnetic viscosity measurements reveal that thermal stability is affected not only by grain sizes but also by anisotropy reduction associated with nanostructure evolution, as the film thickness decreases.  相似文献   

18.
In this work, an effective method to modulate the ferromagnetic properties of Mn-doped GeTe chalcogenide-based phase change materials is presented. The microstructure of the phase change magnetic material Ge1?x Mn x Te thin films was studied. The X-ray diffraction results demonstrate that the as-deposited films are amorphous, and the crystalline films are formed after annealing at 350 °C for 10 min. Crystallographic structure investigation shows the existence of some secondary magnetic phases. The lattice parameters of Ge1?x Mn x Te (x = 0.04, 0.12 and 0.15) thin films are found to be slightly different with changes of Mn compositions. The structural analysis clearly indicates that all the films have a stable rhombohedral face-centered cubic polycrystalline structure. The magnetic properties of the amorphous and crystalline Ge0.96Mn0.04Te were investigated. The measurements of magnetization (M) as a function of the magnetic field (H) show that both amorphous and crystalline phases of Ge0.96Mn0.04Te thin film are ferromagnetic and there is drastic variation between amorphous and crystalline states. The temperature (T) dependence of magnetizations at zero field cooling (ZFC) and field cooling (FC) conditions of the crystalline Ge0.96Mn0.04Te thin film under different applied magnetic fields were performed. The measured data at 100 and 300 Oe applied magnetic fields show large bifurcations in the ZFC and FC curves while on the 5,000 Oe magnetic field there is no deviation.  相似文献   

19.
The magnetic properties of strontium hexaferrite (SrFe12O19) films fabricated by pulsed laser deposition on the Si(100) substrate with Pt(111) underlayer have been studied as a function of film thickness (50–700 nm). X-ray diffraction patterns confirm that the films have c-axis perpendicular orientation. The coercivities in perpendicular direction are higher than those for in-plane direction which indicates the films have perpendicular magnetic anisotropy. The coercivity was found to decrease with increasing of thickness, due to the increasing of the grain size and relaxation in lattice strain. The 200 nm thick film exhibits hexagonal shape grains of 150 nm and optimum magnetic properties of Ms=298 emu/cm3 and Hc=2540 Oe.  相似文献   

20.
Influences of oxygen-partial pressure and annealing on the electrical and magnetic properties of CoFeAlO thin films were systematically investigated by means of resistivity, permeability, magnetization and ferromagnetic resonance (FMR) measurements. It was found that, with increasing oxygen-partial pressure or under annealing, the electrical resistivity of the film increased and the magnetic softness decreased, which is attributed to the microstructural change of the film. Interestingly, an as-deposited Co45.30Fe20.65Al19.34O14.71 film was found to exhibit an inverted hysteresis loop with negative coercivity, and this peculiar phenomenon disappeared upon effects of oxygen-partial pressure and annealing. It was also found that the as-deposited films owned a narrow FMR line width that increased with increasing oxygen-partial pressure or under annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号