首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 59 毫秒
1.
基于Michelson干涉仪的高灵敏度光纤高温探针传感器   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种简单的高灵敏度的光纤高温探针传感器, 该传感器由一小段多模光纤和一端镀有银膜的单模光纤熔接而成. 由于单模光纤和多模光纤的纤芯直径不同, 当光波从多模光纤传输至多模光纤和单模光纤的熔接端面时, 一部分纤芯光耦合进包层, 因为单模光纤纤芯的折射率和包层的折射率不同, 不同模式的光经过银膜反射后在多模光纤内重新耦合进单模光纤, 最终形成干涉.随着外界温度的升高, 干涉谱峰值会向长波方向漂移. 实验结果证明这种传感器在470 ℃–600 ℃范围内具有很好的稳定性, 线性度达99.7%, 灵敏度为120 pm/℃, 可作为远距离反射型探针温度传感器, 在石油探测和油气田开发等领域有着广泛的应用前景. 关键词: 光纤传感 温度测量 Michelson干涉  相似文献   

2.
提出了一种基于光纤布拉格光栅嵌入单模-多模纤芯-单模(single-mode-multimode fiber core-single mode, SMS)光纤结构的湿度传感器。当环境湿度变化时,SMS光纤结构的干涉光谱会发生漂移,而光纤布拉格光栅对湿度不敏感,其纤芯基模保持不变。因此利用SMS光纤结构对环境湿度的敏感性去调制光纤布拉格光栅纤芯基模,通过检测光纤布拉格光栅纤芯基模的反射能量变化就可以实现湿度测量。数值模拟了SMS光纤结构的内部光场分布规律,理论计算了不同环境折射率时,多模纤芯的长度、直径对SMS光纤结构输出能量耦合系数的影响。理论模拟表明,随着环境折射率变化,SMS光纤结构中传输的纤芯基模的输出能量耦合系数会发生变化。同时制作了传感器样品并对其进行了传感实验研究,实验结果表明多模纤芯长35 mm、纤芯直径为85 μm的传感器在45%~95%RH湿度变化范围内,湿度灵敏度为0.06 dBm·(%RH)-1。在20~80 ℃温度范围内,传感器的温度灵敏度为0.008 nm·℃-1,温度所带来的湿度测量误差为0.047%RH·℃-1。传感器具有制作简单、灵敏度高、反射式能量检测等优点,在湿度测量领域有一定的应用价值。  相似文献   

3.
设计和制作了一种基于单模多模细芯单模光纤马赫曾德尔(Mach-Zehnder)干涉仪结构,可同时测量折射率和温度的传感器。该传感器中,多模光纤和细芯单模熔接点充当光耦合器。导入光纤中传输的光经多模光纤后在细芯光纤的纤芯和包层中激发出纤芯模和包层模,不同模式光在细芯光纤中传输时将产生光程差,再经细芯单模熔接点耦合成为导出光纤的纤芯模而干涉。传感器透射光谱随着环境折射率和温度的变化发生漂移,通过监测不同级次的干涉谷可实现折射率和温度的同时测量。通过对传感器的透射光谱进行傅里叶变换分析可知该透射光谱主要由LP01模和LP16模干涉形成。该传感器透射光谱中1535nm附近干涉谷的折射率和温度响应灵敏度的理论值分别为-55.90nm/RIU和0.0501nm/℃(其中RIU为折射率单位);1545nm附近干涉谷的折射率和温度响应灵敏度的理论值分别为-56.26nm/RIU和0.0505nm/℃。在折射率和温度的变化范围分别为1.3449~1.3972和20℃~90℃的环境中对传感器的响应特性进行实验研究,结果表明:透射光谱中1535nm附近干涉谷的折射率和温度响应灵敏度分别为-53.03nm/RIU和0.0465nm/℃;1545nm附近干涉谷的折射率和温度响应灵敏度分别为-54.24nm/RIU和0.0542nm/℃。理论分析与实验结果相一致。该传感器在生物医学领域有较好的应用前景。  相似文献   

4.
光纤传感是现代光纤技术的重要应用之一。制作了一种基于两个单模光纤粗锥串接的全光纤型马赫-曾德尔高温高灵敏温度传感器。纤芯中传输的光通过第一个光纤锥耦合, 一部分进入纤芯传输,另一部分进入包层形成包层模,纤芯模和包层模具有不同的有效折射率,经过干涉臂的传输产生了光程差。纤芯和包层传输的光再经过第二个光纤锥耦合,形成干涉进入输出光纤传输。对不同长度的传感器进行实验研究,得出传感臂长度与干涉周期之间的关系。研究了传感器温度响应特性,给出了温度响应灵敏度。实验结果表明,在30~400 ℃温度范围内,长度为35 mm的传感器可以得到较高的温度响应灵敏度,其响应灵敏度为0.115 nm·℃-1。利用傅里叶变换对传感器透射谱进行了分析,可以确定在长度为35 mm的传感器中仅有基模LP01和高阶模LP08两种模式,透射谱就是由这两种模式干涉形成的。该传感器体积小、精度高、抗电磁干扰,具有易于制作、对比度大、质轻、灵敏度高、耐高温等优点。可用于高温气体温度测量及油气井测井等领域的高灵敏度温度传感测量。  相似文献   

5.
提出并实验验证了一种基于马赫泽德干涉仪(MZI)的高灵敏度光纤折射率(RI)传感器。传感头由一段单模光纤(SMF)夹熔在两段较短的细芯光纤(TCF)中组成TCF SMF-TCF结构,其总长度为9 mm。由于光纤纤芯失配导致的纤芯模和包层模发生干涉,干涉谱对传感头外部折射率的响应极其敏感。使用该传感器检测具有不同折射率的甘油水溶液,实验结果显示:传感器干涉谱的共振波长随环境折射率的增大向长波方向漂移,其折射率灵敏度在1.33 RIU~1.38 RIU范围内约为159 nm/RIU。该传感器具有结构简单、易于制造、成本较低、灵敏度高、抗电磁干扰能力强等优点,在生物化学与环境监测等领域具有较大的应用潜力。  相似文献   

6.
设计了一种基于模间干涉的亚波长直径光纤气体折射率传感方案,并分析了其测量灵敏度.将标准单模光纤和一段仅传输基模与二阶模的无包层亚波长直径光纤结合形成传感头,通过分析传感头外气体折射率的变化对两个模式干涉谱峰值移动的影响,研究了这种传感器的折射率测量灵敏度.结果表明,这种传感器的灵敏度高于利用折射率引导型光子晶体光纤的基于模间干涉的折射率传感器.因为没有气体向微孔扩散的过程,这种基于模间干涉的亚波长光纤折射率传感器可用于实时探测.  相似文献   

7.
设计了一种基于模间干涉的亚波长直径光纤气体折射率传感方案,并分析了其测量灵敏度.将标准单模光纤和一段仅传输基模与二阶模的无包层亚波长直径光纤结合形成传感头,通过分析传感头外气体折射率的变化对两个模式干涉谱峰值移动的影响,研究了这种传感器的折射率测量灵敏度.结果表明,这种传感器的灵敏度高于利用折射率引导型光子晶体光纤的基于模间干涉的折射率传感器.因为没有气体向微孔扩散的过程,这种基于模间干涉的亚波长光纤折射率传感器可用于实时探测.  相似文献   

8.
李辉栋  傅海威  邵敏  赵娜  乔学光  刘颖刚  李岩  闫旭 《物理学报》2013,62(21):214209-214209
介绍了一种基于光纤气泡和纤芯失配的Mach-Zehnder干涉液体折射率传感器. 将两根纤芯经过腐蚀的普通单模光纤熔接在一起, 在熔接点处形成一个气泡, 在距气泡20 mm处级联一段20 mm的细芯光纤, 再接入一段单模光纤, 形成单模光纤-气泡-单模光纤-细芯光纤-单模光纤结构的传感器. 气泡与光纤芯径失配处的两个节点起到光纤耦合器的作用, 从而形成光纤Mach-Zehnder干涉仪. 环境液体折射率的变化,将使得传感器透射谱能量发生变化, 通过测量干涉谱波峰峰值能量从而实现对折射率的测量. 并对所制作传感器的折射率响应特性进行了实验研究, 实验结果表明干涉谱波峰峰值能量与环境液体折射率之间存在良好的线性关系, 当环境液体折射率变化范围在1.351–1.402时, 响应灵敏度为143.537 dB/RIU, 线性度0.996. 该传感器在生物化学领域有较好的应用前景. 关键词: 光纤气泡 纤芯失配 Mach-Zehnder干涉仪 折射率传感  相似文献   

9.
程君妮 《物理学报》2018,67(2):24212-024212
介绍了一种简单且灵敏度较高的Mach-Zehnder干涉湿度传感器.将单模光纤和多模光纤渐变熔接光纤锥,色散补偿光纤被熔接在两个多模渐变光纤之间,形成了单模光纤-光纤锥-多模渐变光纤-色散补偿光纤-多模渐变光纤-光纤锥-单模光纤结构的传感器.光纤锥起到了增加包层模能量的作用,两个多模渐变光纤节点作为光耦合器,从而形成光纤Mach-Zehnder干涉仪.外界环境湿度的变化,将使得传感器透射谱能量发生变化,通过测量干涉谱波峰峰值能量实现对湿度的测量.实验结果表明干涉谱波峰峰值能量与环境湿度之间存在良好的线性关系.当环境湿度在35%RH—85%RH范围内变化,一段由20 mm色散补偿光纤组成的传感器,其灵敏度为-0.0668 dB/%RH,相关度为0.995.该传感器结构紧凑、尺寸小、制造工艺简单,这使其可以被广泛用于湿度测量.  相似文献   

10.
提出了一种基于光纤锥的在线型光纤马赫-曾德干涉仪式折射率传感器.传感器是在一根单模光纤上使用光纤熔接机拉制出两个光纤锥,光纤锥的直径为43.7μm,长度为480μm.干涉仪中光纤锥充当光纤耦合器,激发出光纤高阶模,并将高阶模耦合进单模光纤使之与纤芯基模形成模间干涉.被环境溶液的折射率、温度的变化改变模式间相位差,将导致干涉仪的传输光谱发生漂移,从而实现传感测量.实验结果表明:当环境溶液的折射率变化范围为1.335~1.403RIU时,传感器的折射率灵敏度为-128.233nm/RIU;当水溶液的温度变化范围为30~75℃时,传感器的温度灵敏度为0.111nm/℃.该传感器具有制作方法简单、灵敏度高、成本低等特点,可应用于生物传感测量.  相似文献   

11.
光子晶体光纤及在光纤光栅中的应用   总被引:1,自引:0,他引:1  
从光子晶体光纤(PCF)与普通光纤在光纤结构上的差异出发,简要分析PCF的导光原理与单模特性,并探讨基于PCF的光纤光栅的稳定性,基于聚合物填充多孔光纤的长周期光纤光栅的温度调谐性能,以及纯结构性非光敏纤芯长周期光子晶体光纤光栅的原理。从一个方面说明了光子晶体光纤的潜在应用。  相似文献   

12.
利用光纤光栅的高功率掺镱光纤激光器   总被引:5,自引:0,他引:5  
潘玉寨  张军  胡贵军  张亮  刘云  王立军 《光学学报》2004,24(9):237-1239
报道了利用一对光纤光栅作为双包层Yb^3 掺杂光纤激光器的谐振腔,激光二极管光纤模块(LD)进行了抽运,并采用锥形光纤实现了全光纤化结构,获得了高功率双包层光纤激光器。光纤光栅通常是用融接技术实现与双包层光纤的一体化连接的,采用的双包层光纤为内包层为梅花瓣形结构的掺Yb^3 离子的石英光纤,采用的抽运源为中心波长为970nm的半导体激光光纤输出模块,在抽运源电流达到2.4A时,获得了10.8W的光纤激光器单横模输出,输出波长1100.5nm,峰值半峰全宽(FWHM)为0.54nm,激光器斜效率为59%。  相似文献   

13.
报道了一种用高频CO2激光器在有纳米环结构的新型弯曲不敏感光纤上写入的长周期光纤光栅。实验表明只有周期在两个特定的范围内的长周期光纤光栅在1200-1650nm波长范围内会有明显的谐振峰出现。对两个周期分别为295μm和470μm的长周期光纤光栅的温度和应变特性进行了研究。实验结果显示周期为295μm的长周期光纤光栅的...  相似文献   

14.
高双折射光子晶体光纤中均匀布拉格光栅的特性   总被引:4,自引:0,他引:4  
王智  李欣蓓  王晶晶 《光学学报》2006,26(9):325-1328
研究了具有高双折射的光子晶体光纤(HB PCF)中均匀布拉格光栅(FBG)的光谱特性。利用紧凑的超格子模型,对光子晶体光纤的传输特性进行分析,研究正向传输和反向传输的模式之间的耦合规律,从而研究写入光子晶体光纤中的均匀布拉格光栅的特性。首先给出具有C6v对称性的零双折射光子晶体光纤中光纤布拉格光栅的布拉格波长λB随光纤结构参量的变化规律;然后分析一种高双折射光子晶体光纤中的光纤布拉格光栅的光谱特性,高双折射使两个不同偏振态的反射峰分开较大;最后分析了一种常用的双模双折射光子晶体光纤中光纤布拉格光栅的光谱特性,LP01模和LPe11模的两个偏振态对应的反射谱都由于高双折射而分开。  相似文献   

15.
采用国产大模场面积双包层光纤的714W连续光纤激光器   总被引:33,自引:2,他引:31  
采用两个中心波长约976 nm准直输出的高功率半导体激光模块为抽运源,通过空间滤波和非球面透镜耦合技术,双端抽运长度为21 m的大模场面积国产掺镱双包层光纤,获得了714.5 W的高功率连续激光输出。采用反向抽运,当入纤抽运功率为760 W时,激光输出功率达到501 W;采用双端抽运,当入纤抽运功率为1137 W时,获得了714.5 W的高功率连续输出,光光转换效率为62.8%,斜率效率为67%。  相似文献   

16.
高功率双包层光纤激光器   总被引:5,自引:0,他引:5  
介绍了高功率双包层光纤激光器的结构和工作原理,综述这种新型光纤激光器的主要特点及其在国内外的最新进展状况,展望了双包层光纤激光器的应用前景。  相似文献   

17.
利用冷却法得到多波长输出的光纤环形激光器   总被引:7,自引:0,他引:7  
提出一种新型的掺铒光纤环形激光器,利用全光纤马赫-曾德尔干涉仪选频,并将掺铒光纤浸在液氮中冷却,得到了稳定的7个波长的激光输出,波长间隔为0.65nm。  相似文献   

18.
在保偏光纤上制作光纤光栅的应用研究   总被引:9,自引:1,他引:8  
提出一种在保偏光纤上计算光纤拍长的方法,即在保偏光纤上制作光纤光栅,利用光纤光栅的特性可以方便地求得光纤的拍长,同时,发现在保偏光纤上写入光纤光栅,其过程等效于在两个主轴上分别写入了一个光纤光栅,并且这两个光栅对于光的偏振态具有选择性,它们分别作用的偏振态是相互正交的。利用此特性,可以得到偏振消光比比较高的偏振分束器。  相似文献   

19.
林祥芝  潘裕斌 《光学学报》1998,18(4):07-509
报道用971nm半导体激光器泵浦的掺铒光纤激光器的一些实验研究结果。演示了由光纤环反射器和光纤光栅构成的全光纤色散掺铒光纤激光器,在1.55μm波段获得了线宽小于0.05nm的激光输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号