首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The excitation and propagation of the guided waves in a stratified half-space and a Rayleigh wave exploration method in shallow engineering seismic exploration are studied in this paper. All the modes of the guided waves are calculated by the bisection method in the case where the low velocity layers are contained in a stratified half-space. Cases when the formation shear wave velocity gradually decreases from the top to the bottom layers are also studied. The dispersion curves obtained in actual Rayleigh wave exploration are usually noncontinual zigzag curves, but the dispersion curves given by the elastic theory for given modes of the guided waves are smooth and continual curves. In this paper, the mechanism of zigzag dispersion curves in Rayleigh wave exploration is investigated and analyzed thoroughly. The zigzag dispersion curves can give not only the possible positions of the low-velocity layers but also the other information on the formation structure (fractures, oil, gas, etc.). It is found that the zigzag dispersion curves of the Rayleigh wave are the result of the leap of the modes and the existence of low velocity layers in a stratified half-space. The effects of the compressional wave velocity, shear wave velocity, and density of each layer on zigzag dispersion curves and the relationship of the low velocity layers to zigzag dispersion curves are also investigated in detail. Finally, the exploration depth of the Rayleigh wave is discussed. The exploration depth of the Rayleigh wave is equal to the wavelength multiplied by a coefficient that is variable and usually given by the work experience and the formation properties of the local work area.  相似文献   

2.
分层固体板中导波的激发与频散特性   总被引:2,自引:0,他引:2       下载免费PDF全文
针对无限大弹性分层固体板,研究了结构中导波的频散和激发特性。首先使用传递矩阵法推导分层板模型中导波的频散方程,然后用二分法求取导波各模式的频散曲线,进而分析结构中导波的频散特性。结果表明:在速度递增或递减的分层板中,基阶模式和高阶模式的高频极限分别等于低速层的瑞利波速和横波波速。对于含低速夹层的分层板,所有模式的高频极限都等于低速层的横波速度。在导波激发特性方面,研究了在具有一定宽度的法向力源作用下的分层板中导波各模式在结构中的法向位移谱。发现在速度递增的分层板结构中基阶模式是主导模式,而对于速度递减和含低速夹层模型,主导模式在不同的频段范围内对应不同的导波模式。   相似文献   

3.
The dispersion characteristics and excitation mechanisms of the guided waves in multilayered plates are studied in this paper. Firstly, the dispersion equation is obtained by the propagator matrix method. Then, the bisection technique is employed to find all the roots of the dispersion equation. The dispersion characteristics of the guided waves are investigated and analyzed. For the multilayered plates in which the S-wave velocity increases or decreases from top to bottom, it is found that the velocity limits in high frequency of the first and high modes are equal to the Rayleigh wave and S-wave velocities of the low-velocity layer, respectively. It is also found that the velocity limits in the high frequency of all modes are equal to the S-wave velocity of the low-velocity layer for the plate with a low-velocity middle layer. The normal displacement spectrum of all the modes excited by the normal force source with a definite width on the surface of the plate is also investigated. It is proved that the dominant mode is the first mode when the S-wave velocity increases from top to bottom layer and the dominant mode is different in different frequency range for the plate with a low-velocity middle layer.  相似文献   

4.
为了研究含孔隙介质分层半空间中瑞利波的传播规律,分析孔隙介质参数对瑞利波频散曲线的影响,本文进行了数值模拟研究。采用传递矩阵算法,计算了含孔隙分层半空间中一定频率范围内瑞利波所有模式的频散及激发强度曲线,并与均匀弹性固体分层半空间情况作了类比分析,在含孔隙覆盖层的两层模型和含低速孔隙夹层的三层模型下,详细研究了孔隙度、渗透率、层厚度等参数对瑞利波各模式的影响,发现孔隙度及层厚度的变化对频散曲线影响较大,而渗透率的变化对频散曲线影响较小。   相似文献   

5.
柱面Love波频散分析与SH波场的数值计算   总被引:1,自引:0,他引:1  
对贴井壁环型剪切源在柱状双层弹性介质中激发的SH波场进行了理论求解,导出了柱面Love波频散方程,讨论了柱面Love波存在的条件及其区域.通过数值计算考察了柱面Love波的频散特性和激发强度,发现最低阶柱面Love波具有截止频率,这与平面半空间双层弹性介质模型下的Love波无截止频率的特征不同.渐近分析与数值考察都表明,井径r1→∞时,柱面Love波频散方程趋向平面双层半空间的Love波方程,柱面Love波的截止频率趋于零.全波计算还显示用激发SH波来探测侵入带外原状地层的横波信息是一个十分简洁的途径..  相似文献   

6.
We study excitation of acoustic, leaky, and surface waves by a time-harmonic force source located in a homogeneous isotropic elastic half-space contacting a homogeneous gas. The force acts in the normal direction to the interface between the media. We consider the case where the sound velocity in the gas is less than the velocity of the Rayleigh wave propagating along the surface of the solid. An expression is derived for the period-averaged radiation power of the surface Stoneley wave. The total radiation power is calculated for the acoustic wave in the gas and for the leaky pseudo-Rayleigh wave. Variations in the radiation powers of the surface and leaky waves are analyzed as functions of the source depth. If the velocities of compressional and shear waves in the elastic medium significantly exceed the sound velocity in the gas, then the radiation power of the Stoneley wave turns out to be a factor of 106–108 smaller than the radiation powers of other waves. The radiation power of the Stoneley wave decreases monotonically with increasing source depth, and the decrease becomes more pronounced with the increase in the difference between the acoustic impedances of the contacting media. If the shear-wave velocity in the solid is close to the sound velocity in the gas, then the radiation power of the Stoneley wave is comparable with the radiation powers of other waves and exhibits maximum at a certain source depth. For some parameters of the gas and the solid, and for certain source depths, the Stoneley wave carries away more than a half of the total radiation power. It is shown that, for certain relations between the parameters of the media, the radiation power of the Stoneley wave increases due to redistribution of the radiated power from the pseudo-Rayleigh leaky wave. The total power of these waves remains approximatly constant and, with accuracy of the order of 10−3, is equal to the radiation power of the Rayleigh wave at the vacuum-solid interface. It is shown that the acoustic-wave power which can be transmitted to the upper layers of the atmosphere during an earthquake does not exceed 0.01% of the total power radiated at a given frequency. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 7, pp. 577–592, July 2006.  相似文献   

7.
In the upper tens of meters of ocean bottom, unconsolidated marine sediments consisting of clay, silt, or fine sand with high porosity are "almost incompressible" in the sense that the shear wave velocity is much smaller than the compressional wave velocity. The shear velocity has very large gradients close to the ocean floor leading to strong coupling of compressional and shear waves in such "soft" sediments. The weak compressibility opens an avenue for developing a theory of elastic wave propagation in continuously stratified soft sediments that fully accounts for the coupling. Elastic waves in soft sediments consist of "fast" waves propagating with velocities close to the compressional velocity and "slow" waves propagating with velocities on the order of the shear velocity. For the slow waves, the theory predicts the existence of surface waves at the ocean-sediment boundary. In the important special case of the power-law depth-dependence of shear rigidity, phase and group velocities of the interface waves are shown to scale as a certain power of frequency. An explicit, exact solution was obtained for the surface waves in sediments characterized by constant density and a linear increase of shear rigidity with depth, that is, for the case of shear speed proportional to the square root of the depth below the sediment-water interface. Asymptotic and perturbation techniques were used to extend the result to more general environments. Theoretical dispersion relations agreed well with numerical simulations and available experimental data and, as demonstrated in a companion paper [D. M. F. Chapman and O. A. Godin, J. Acoust. Soc. Am 110, 1908 (2001)] led to a simple and robust inversion of interface wave travel times for shear velocity profiles in the sediment.  相似文献   

8.
L. Lu  B. Zhang 《Acoustical Physics》2006,52(6):701-712
The shear-wave velocity profile can be obtained by the velocity of Rayleigh waves through the back-calculation based on dispersion curves. However, the dispersion curves obtained in practical application are always discontinuous and correspond to different mode branches due to mode jumping, especially in the presence of low-velocity layer. Mode misidentification may be encountered in inversion based on these jumped dispersion curves. Mode analysis demonstrates that the mode jumping is caused by a different surface displacement distribution with frequency for each mode. This indicates that the surface displacement distribution of the modes should be taken into account for the case of a low-velocity layer. Shear-wave velocity profiles are inversed based on the (possibly discontinuous) dispersion curves of fundamental and/or higher modes using a genetic algorithm (GA). In addition to the dispersion characteristics, the surface displacement distribution is also taken into account for the case of a low-velocity layer; as a result, mode misidentification is avoided. Published in Russian in Akusticheskiĭ Zhurnal, 2006, Vol. 52, No. 6, pp 811–824. The text was submitted by the authors in English.  相似文献   

9.
We investigate the guided waves in a multi-layered cylindrical elastic solid medium. The dispersion function of guided waves is usually complex and the dispersion curves of all modes are not conveniently obtained. Here we present an effective method to obtain the dispersion curves of all modes. First, the dispersion function of the guided waves is transformed into a real function. The dispersion curves are then calculated for all the modes of the guided waves by the bisection method. The modes with the orders n = 0, 1, and 2 are analysed in two- and three-layer media. The existence condition of Stoneley wave is discussed. The modes of the guided waves are also investigated in a two-layer medium, in which the velocity of shear wave in the outer layer is less than that in the inner layer.  相似文献   

10.
Belloncle VV  Rousseau M 《Ultrasonics》2006,45(1-4):188-195
The aim of this paper is to evaluate the influence of the surface free energy upon the propagation of the eigenmodes of structures, by studying successively (a) the Rayleigh wave for an elastic half-space, (b) the Lamb waves for an elastic layer, and (c) the guided modes for a tri-layer structure (e.g., metal/adhesive/metal). The surface free energy is a parameter which appears in the jump conditions of stresses and displacements at each interface, and which consequently modifies the eigenmodes, solutions of the boundary conditions system. As expected, the Rayleigh wave is dispersive and its velocity increases when the surface free energy increases. In the same way, the velocity of Lamb waves also increases except at normal angle of propagation where the surface free energy does not arise. Moreover, near the Rayleigh angle, the behaviour of the A0 and S0 Lamb modes varies strongly according to the surface free energy. Similar results are observed for the tri-layer structure.  相似文献   

11.
We develop an asymptotic theory describing nonlocal effects caused by weak-diffusion processes in the case of resonant interaction of quasi-harmonic waves of small but finite amplitudes with flows of various physical nature in the case of an arbitrary relation between the nonlinearity and diffusion.We analyze the interaction of internal gravity waves with plane-parallel stratified shear flows in the nonlinearly-dissipative critical layer (CL) formed in the vicinity of the resonance level where the flow velocity is equal to the phase velocity of the wave. It is shown that the combined effect of the radiation force in the inner region of the CL and vorticity diffusion to the outer region results in the formation of a flow in which the asymptotic values of average vorticity at different sides of the CL are constant but different. If the criterion of the linear dynamic stability is satisfied (the Richardson number Ri>1/4), the resulting vorticity steps are comparable to the unperturbed vorticity. As a result, a wave reflected from the vorticity inhomogeneity in the CL is formed. As the amplitude of the incident wave increases, the average vorticity at the incidence side approaches the linear-stability threshold (Richardson number Ri > 1/4), and the reflection coefficient tends to -1.In the regime of nonlinear dissipative CL, we study the quasi-stationary asymptotic behavior of the flow formed by an internal gravity wave incident on a dynamically stable flow with velocity and density stratification, whose velocity at some level is equal to the phase velocity of the wave. It is shown that the vorticity diffusion results in the formation of a nonlocal transition region between the CL and the unperturbed flow, which we call the diffusive boundary layer (DBL). In this case, the CL is shifted toward the incident wave. We obtain a self-similar solution for the average fields, which is valid in the case of a constant vorticity step in the CL, and determine its parameters depending on the inner Reynolds number in the CL which describes the relation between the nonlinear and diffusive effects for the wave field in the resonance region. We determine the structure and temporal dynamics of the DBL formed by a rough surface streamlined by a stratified fluid whose velocity changes direction at some level.It is shown that in the case of the nonlinear resonance interaction of plasma electrons with a Langmuir wave, the electron diffusion in the velocity space leads to a significant nonlocal distortion of the electron distribution function outside the trapping region. We determine the distorted distribution function and calculate the rate of the nonlinear Landau damping of a finite-amplitude wave for an arbitrary ratio of the electron collision rate and the oscillation period of trapped electrons.  相似文献   

12.
The study analyzes the characteristics of surface Love waves excited by the moment of an oscillating torsional force with a point of action that moves uniformly and rectilinearly along the free flat boundary of a medium having the structure of a “layer on a half-space.” The azimuthal–angular distribution of the amplitude and Doppler shift in frequency of the wave modes is studied as a function of the motion velocity of a vibrating source and the parameters of the medium.  相似文献   

13.
A new experimental method for measuring the phase velocities of guided acoustic waves in soft poroelastic or poroviscoelastic plates is proposed. The method is based on the generation of standing waves in the material and on the spatial Fourier transform of the displacement profile of the upper surface. The plate is glued on a rigid substrate so that it has a free upper surface and a nonmoving lower surface. The displacement is measured with a laser Doppler vibrometer along a line corresponding to the direction of propagation of plane surface waves. A continuous sine with varying frequencies was chosen as excitation signal to maximize the precision of the measurements. The spatial Fourier transform provides the wave numbers, and the phase velocities are obtained from the relationship between wave number and frequency. The phase velocities of several guided modes could be measured in a highly porous foam saturated by air. The modes were also studied theoretically and, from the theoretical results, the experimental results, and a fitting procedure, it was possible to determine the frequency behavior of the complex shear modulus and of the complex Poisson ratio from 200 Hz to 1.4 kHz, in a frequency range higher than the traditional methods.  相似文献   

14.
The effect of initial stress on the propagation behavior of Love waves in a piezoelectric half-space of polarized ceramics carrying a functionally graded material (FGM) layer is analytically investigated in this paper from the three-dimensional equations of linear piezoelectricity. The analytical solutions are obtained for the dispersion relations of Love wave propagating in this kind of structure with initial stress for both electrical open case and electrical short case, respectively. One numerical example is given to graphically illustrate the effect of initial stress on dispersive curve, phase velocity and electromechanical coupling factor of the Love wave propagation. The results reported here are meaningful for the design of surface acoustic wave (SAW) devices with high performance.  相似文献   

15.
We use the Born approximation of the perturbation method to solve the problem of scattering of a harmonic Rayleigh surface acoustic wave by a weak-contrast inhomogeneity that is small compared with the wavelength and is located in a solid half-space near its boundary. The material of the inhomogeneity differs from the material of the half-space only in its density. The Rayleigh wave incident on the inhomogeneity is excited by a monochromatic surface force source acting normally to the half-space boundary. We derive expressions for the displacement fields in the scattered spherical compressional and shear (SV- and SH-polarized) waves. Scattering of the Rayleigh wave into a Rayleigh wave is studied in detail. We find expressions for the vertical and horizontal components of the displacement vector in the scattered Rayleigh wave as well as its radiated power. It is shown that the field of the scattered surface wave is mainly formed by vertical oscillations of the inhomogeneity in the field of the incident wave. In this case, the radiated power for the scattered Rayleigh wave formed by vertical motion of the inhomogeneity in the incident-wave field depends on the depth of the inhomogeneity as the fourth power of the function describing the well-known depth dependence of the vertical displacements in the Rayleigh surface wave. Correspondingly, the dependence of the radiated power for the scattered Rayleigh wave formed by horizontal motion of the inhomogeneity depends on its location depth as the fourth power of the depth dependence of the horizontal displacements in the Rayleigh surface wave. We perform calculations of the ratio between the powers of the scattered and incident Rayleigh waves for different ratios between the velocities of the compressional and shear waves in a solid. It is shown that the radiated power for the scattered surface wave decreases sharply with increasing depth of the subsurface-inhomogeneity location. Thus, the scattering of a Rayleigh wave into a Rayleigh wave is fairly efficient only when the location depth of the inhomogeneity does not exceed about one-third of the wavelength of the shear wave in an elastic medium.  相似文献   

16.
长骨中振动声激发超声导波的方法   总被引:1,自引:0,他引:1       下载免费PDF全文
刘珍黎  宋亮华  白亮  许凯亮  他得安 《物理学报》2017,66(15):154303-154303
为了实现一定频段内任意低频下在长骨中激励导波信号,本文提出一种采用聚焦高频(5 MHz)超声换能器在长骨皮质骨中激发低频(150 kHz)超声导波的振动声方法.首先介绍了板状超声导波理论和双声束共聚焦法与单声束调幅法激发振动声的基本原理;进而采用三维有限元仿真方法分析振动声激发低频超声导波的基本现象,然后结合牛胫骨板离体实验,验证振动声激发低频超声导波的可行性.结果均表明,双声束共焦与单声束振动超声均可在骨板中激发低频超声导波.相关研究方法有助于提高空间域长骨中超声导波测量精度,以及在一定频段内实现任意频率激励等,对发展低频超声导波在体测量长骨皮质骨的新技术具有一定的指导意义.  相似文献   

17.
The solution is found for the problem of radiation of the surface Stoneley wave by a point harmonic force acting normally to the interface between uniform solid and gaseous half-spaces. We consider the case where the sound velocity in the gas is less than the Rayleigh-wave velocity on the surface of the solid. Expressions for the partial powers of the Stoneley wave radiated into the solid and the gas are obtained. The dependences of these powers on the parameters of the contacting media are analyzed. It is shown that if the velocities of the compressional and shear waves in the solid are significantly greater than the sound velocity in the gas, then almost all power of the Stoneley wave is concentrated in the gas. If the velocity of the Rayleigh wave in the solid half-space is close to the sound velocity in the gas, then the Stoneley-wave power radiated into the solid can be greater than the power radiated in the gas. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 4, pp. 304–313, April 2008.  相似文献   

18.
We present a laser ultrasonic method to investigate a titanium nitride(TiN) coating specimen.The technique is based on the principle of surface acoustic wave (SAW) dispersion during acoustic propagation on a half-space with the presence of a thin layer.Due to the high efficiency of laser line-source excitation,we have been able to generate and detect a SAW with an excellent signal-to-noise ratio in a wide frequency band.An inverse fitting algorithm was employed to extract simultaneously the thickness and the elastic parameters of the TiN coating from the experimental SAW velocity dispersion curve.  相似文献   

19.
仇浩淼  夏唐代  何绍衡  陈炜昀 《物理学报》2018,67(20):204302-204302
研究流体/多孔介质界面Scholte波的传播特性对于水下勘探、地震工程等领域具有重要意义.本文基于Biot理论和等效流体模型,采用势函数方法,推导了描述有限厚度流体/准饱和多孔半空间远场界面波的特征方程和位移、孔压计算公式.在此基础上,分别以砂岩和松散沉积土为例,研究了流体/硬多孔介质和流体/软多孔介质两种情况下,可压缩流体层厚度和多孔介质饱和度对伪Scholte波传播特性的影响.结果表明:多孔介质软硬程度显著影响界面波的种类、相速度、位移和水压力分布;有限厚度流体/饱和多孔半空间界面处伪Scholte波相速度与界面波波长和流体厚度的比值有关;孔隙水中溶解的少量气体对剪切波的相速度的影响不大,对压缩波相速度、伪Scholte波相速度和孔隙水压力分布影响显著.  相似文献   

20.
利用固体和流体介质中波传播理论,导出了冰-水两层复合结构中导波频散方程。进一步,利用二分法对频散方程进行了数值求解,得到了ω-k频散曲线(ω与k分别为圆频率和波数),以及相速度和群速度频散曲线。结果表明:冰-水两层复合结构中导波由具有相同厚度水层和冰层中导波耦合而成,但与水层和冰层中导波频散曲线相比,复合结构中导波频散曲线除第1阶模式外,其余高阶模式均发生了很大变化。从原水层第1阶模式的截止频率开始,复合结构第2阶模式的相速度曲线被压低,各高阶(大于2阶)模式的相速度曲线出现一个跃变点,群速度曲线出现一个极大和一个极小值。水层越厚,复合结构各高阶模式的截止频率越低,相同频带内导波模式越丰富。水层厚度保持不变时,复合结构各阶模式的相速度和群速度曲线均随冰层厚度的增加而向低频方向移动。另外,还进一步分析了冰-水复合结构的导波波结构,发现第1阶导波模式的能量主要集中在冰层内和海表面附近,而2阶以上高阶导波模式的振动位移幅度随深度方向呈现周期性特征,并且模式阶数越高,振动越复杂。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号