首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sum-frequency generation (SFG) is theoretically studied in a quantum dot (QD) through the framework of the effective-mass approximation and compact density matrix approach. QD is spherical with the parabolic potential confinement, under applied electric field and in the presence of Rashba spin-orbit interaction (SOI). Using the computed energies and eigenkets, the second-order susceptibility of SFG has been also calculated as a function of radius of QD, spin–orbit interaction strength and the applied electric field. The effects of Rashba SOI strength, radius of QD and the applied electric field on the second-order of susceptibility coefficient are considered.  相似文献   

2.
In the current work, based on a semiclassical Boltzmann approach, we have investigatedthe influence of the Rashba spin-orbit coupling on spin-current of a single layer gappedgraphene. It was shown that the Rashba coupling plays a considerable role in thegeneration of the spin-current of vertical spins in mono-layer graphene. The behavior ofthe spin-current is determined by the density of impurities. It was also shown that thespin-current of the system could increase by increasing the Rashba coupling strength andband-gap of the graphene and the sign of the spin-current could be controlled by thedirection of the current-driving electric field.  相似文献   

3.
Spin transfer torque in magnetic structure occurs when the transverse component of the spin current that flows from the nonmagnetic medium to ferromagnetic medium is absorbed by the interface. In this paper, considering the Rashba effect on the semiconductor region, we discuss the spin transfer torque in semiconductor/ferromagnetic structure and obtain the components of spin-current density for two models:(i) single electron and(ii) the distribution of electrons. We show that no matter whether the difference in Fermi surface between semiconductor and Fermi spheres for the up and down spins in ferromagnetic increases, the transmission probability decreases. The obtained results for the values used in this article illustrate that Rashba effect increases the difference in Fermi sphere between semiconductor and Fermi sphere for the up and down spins in ferromagnetic. The results also show that the Rashba effect, brings an additional contribution to the components of spin transfer torque, which does not exist in the absence of the Rashba interaction. Moreover, the Rashba term has also different effects on the transverse components of the spin torque transfer.  相似文献   

4.
The current-induced spin accumulation is calculated for a 1D lateral semiconductor superlattice with spin–orbit interaction of the Rashba and Dresselhaus type. Due to its particular symmetry, the Rashba interaction alone only leads to an in-plane component of the magnetization transverse to the applied electric field. When in addition a Dresselhaus contribution is present, this symmetry is lifted, and all components of the magnetization are induced by the electric field. Based on the density-matrix approach, the induced spin polarization is determined as a function of external in-plane electric and magnetic fields.  相似文献   

5.
Here we have investigated the influence of magnetic field and confinement potential on nonlinear optical property, third harmonic generation (THG) of a parabolically confinement quantum dot in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of confining potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate that an increase of Rashba spin orbit interaction coefficient produces strong effect on the peak positions of THG. The role of confinement strength and spin orbit interaction strength as control parameters on THG have been demonstrated.  相似文献   

6.
The electron spin dynamics in (111)-oriented GaAs/AlGaAs quantum wells is studied by time-resolved photoluminescence spectroscopy. By applying an external electric field of 50 kV/cm a two-order of magnitude increase of the spin relaxation time can be observed reaching values larger than 30 ns; this is a consequence of the electric field tuning of the spin-orbit conduction band splitting which can almost vanish when the Rashba term compensates exactly the Dresselhaus one. The measurements under a transverse magnetic field demonstrate that the electron spin relaxation time for the three space directions can be tuned simultaneously with the applied electric field.  相似文献   

7.
We derive an expression for the total spin-splitting energy in an asymmetric quantum dot with ferromagnetic contacts, subjected to a transverse electric field. Such a structure has been shown by one of us to act as a spintronic quantum gate with in-built qubit readers and writers (Phys. Rev. B61, 13813 (2000)). The ferromagnetic contacts result in a magnetic field that causes a Zeeman splitting of the electronic states in the quantum dot. We show that this Zeeman splitting can be finely tuned with a transverse electric field as a result of nonvanishing Rashba spin–orbit coupling in an asymmetric quantum dot. This feature is critical for implementing a quantum gate.  相似文献   

8.
A theory of spin manipulation of quasi-two-dimensional (2D) electrons by a time-dependent gate voltage applied to a quantum well is developed. The Dresselhaus and Rashba spin-orbit coupling mechanisms are shown to be rather efficient for this purpose. The spin response to a perpendicular-to-plane electric field is due to a deviation from the strict 2D limit and is controlled by the ratios of the spin, cyclotron, and confinement frequencies. The dependence of this response on the magnetic field direction is indicative of the strengths of the competing spin-orbit coupling mechanisms.  相似文献   

9.
赵正印  王红玲  李明 《物理学报》2016,65(9):97101-097101
正如人们所知, 可以通过电场或者设计非对称的半导体异质结构来调控体系的结构反演不对称性(SIA)和Rashba自旋劈裂. 本文研究了Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中第一子带的Rashba 系数和Rashba自旋劈裂随Al0.3Ga0.7N插入层(右阱)的厚度ws以及外加电场的变化关系, 其中GaN层(左阱)的厚度为40-ws Å. 发现随着ws的增加, 第一子带的Rashba系数和Rashba自旋劈裂首先增加, 然后在ws>20 Å 时它们迅速减小, 但是ws>30 Å时Rashba自旋劈裂减小得更快, 因为此时kf也迅速减小. 阱层对Rashba系数的贡献最大, 界面的贡献次之且随ws变化不是太明显, 垒层的贡献相对比较小. 然后, 我们假ws=20 Å, 发现外加电场可以很大程度上调制该体系的Rashba系数和Rashba自旋劈裂, 当外加电场的方向同极化电场方向相同(相反)时, 它们随着外加电场的增加而增加(减小). 当外加电场从-1.5×108 V·m-1到1.5×108 V· m-1变化时, Rashba系数随着外加电场的改变而近似线性变化, Rashba自旋劈裂先增加得很快, 然后近似线性增加, 最后缓慢增加. 研究结果表明可以通过改变GaN层和Al0.3Ga0.7N层的相对厚度以及外加电场来调节Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中的Rashba 系数和Rashba自旋劈裂, 这对于设计自旋电子学器件有些启示.  相似文献   

10.
The distributions of spin and currents modulated by magnetic field in a transverse parabolic confined two-dimensional electronic system with a Rashba spin--orbit coupling have been studied numerically. It is shown that the spin accumulation and the spin related current are generated by magnetic field if the spin--orbit coupling is presented. The distributions of charge and spin currents are antisymmetrical along the cross-section of confined system. A transversely applied electric field does not influence the characteristic behaviour of charge- and spin-dependent properties.  相似文献   

11.
The quasi-classical approximation is used to determine the positions of the classical turning points upon motion of an electron that is bound by an image field and a constant homogeneous electric field of the same direction. Power expansions of the coordinates of the turning points in a wide range of electron energies and field strengths are obtained. The mechanism of one-dimensional confinement of an electron, which determines a completely discrete spectrum of states, is described. The dependence of the spatial width of the confinement region on the field strength and electron energy is determined. The dependences of the electron energy in different states on the external field strength are calculated numerically. Quasi-classical quantization is performed, and the dependence of the electron energy on the width of the confinement region is determined. The energy interval of a maximum density of electron states is found, which is determined by the dependence of the width of the confinement region on the electric field strength.  相似文献   

12.
We study the influence of electric field on the electronic energy band structure, zero-temperature ballistic conductivity and optical properties of double quantum wire. System described by double-well anharmonic confinement potential is exposed to a perpendicular magnetic field and Rashba and Dresselhaus spin-orbit interactions. Numerical results show up that the combined effects of internal and external agents cause the formation of crossing, anticrossing, camel-back/anomaly structures and the lateral, downward/upward shifts in the energy dispersion. The anomalies in the energy subbands give rise to the oscillation patterns in the ballistic conductance, and the energy shifts bring about the shift in the peak positions of optical absorption coefficients and refractive index changes.  相似文献   

13.
龚士静  段纯刚 《物理学报》2015,64(18):187103-187103
自旋轨道耦合是电子自旋与轨道相互作用的桥梁, 它提供了利用外电场来调控电子的轨道运动、进而调控电子自旋状态的可能. 固体材料中有很多有趣的物理现象, 例如磁晶各向异性、自旋霍尔效应、拓扑绝缘体等, 都与自旋轨道耦合密切相关. 在表面/界面体系中, 由于结构反演不对称导致的自旋轨道耦合称为Rashba自旋轨道耦合, 它最早在半导体材料中获得研究, 并因其强度可由栅电压灵活调控而备受关注, 成为电控磁性的重要物理基础之一. 继半导体材料后, 金属表面成为具有Rashba自旋轨道耦合作用的又一主流体系. 本文以Au(111), Bi(111), Gd(0001)等为例综述了磁性与非磁性金属表面Rashba自旋轨道耦合的研究进展, 讨论了表面电势梯度、原子序数、表面态波函数的对称性, 以及表面态中轨道杂化等因素对金属表面Rashba自旋轨道耦合强度的影响. 在磁性金属表面, 同时存在Rashba自旋轨道耦合作用与磁交换作用, 通过Rashba自旋轨道耦合可能实现电场对磁性的调控. 最后, 阐述了外加电场和表面吸附等方法对金属表面Rashba自旋轨道耦合的调控. 基于密度泛函理论的第一性原理计算和角分辨光电子能谱测量是金属表面Rashba自旋轨道耦合的两大主要研究方法, 本文综述了这两方面的研究结果, 对金属表面Rashba自旋轨道耦合进行了深入全面的总结和分析.  相似文献   

14.
本文基于Lee-Low-Pines幺正变换法,采用Tokuda改进的线性组合算符法研究了Rashba自旋-轨道相互作用效应下量子盘中强耦合磁极化子的性质.结果表明,磁极化子的相互作用能Eint的取值随量子盘横向受限强度ω0、外磁场的回旋频率ωc、电子-LO声子耦合强度α和量子盘厚度L的变化均与磁极化子的状态性质密切相关;磁极化子的平均声子数N随ωc,ω0和α的增加而增大,随L的增加而振荡减小;在Rashba自旋-轨道相互作用效应影响下磁极化子的有效质量将劈裂为m*+,m*-两种,它们随ωc,ω0和α的增加而增大,随L的增加而振荡减小;在研究量子盘中磁极化子问题时,电子-LO声子耦合和Rashba自旋-轨道相互作用效应的影响不可忽略,但Rashba自旋-轨道相互作用和极化子效应对磁极化子的影响只有在电子运动的速率较慢时显著.  相似文献   

15.
Optical properties of semiconductors in the simultaneous presence of electric and magnetic fields are reviewed, with particular emphasis on the possibilities of modulation techniques. First, the problem of an electron in crossed and parallel fields is solved in the one-level effective mass approximation (EMA), and the results are used to interpret the experimental interband transitions in Ge, with due account of the degenerate character of the valence band in this material. The limitations of the one-level EMA are discussed, and the two-level model is introduced, which correctly describes the experimentally observed transition from a magnetic type to an electric type of motion in increasing transverse electric field. Possibilities to observe electric field effects in cyclotron resonance transitions are discussed in this approximation. Finally, the three-level model is used to describe properly both orbital and spin properties of conduction electrons. It is demonstrated that in a small-gap semiconductor with large spin-orbit interaction a sufficiently strong transverse electric field destroys the Landau orbital quantization but not the Pauli spin quantization. Possible experimental consequences of this situation are discussed. Influence of finite dimensions of the sample on the character of the electron motion in crossed and parallel fields is examined. A possibility to achieve the semiconductor-semimetal transition in a symmetryinduced zero-gap semiconductor in crossed field configuration is predicted and described, taking into account the Luttinger effects in the magnetic level structure.  相似文献   

16.
The spin Hall current in a two-dimensional electron system with nonuniform Rashba spin–orbit interaction (SOI) is investigated by means of the lattice Green's function method. Large electric and spin Hall currents are produced by this nonuniform Rashba SOI, while the electric Hall current vanishes in the uniform Rashba SOI system. A nondissipative spin Hall current is also produced, without any longitudinal voltage bias, any external magnetic field and any special class of band insulators.  相似文献   

17.
We have shown that the non-Abelian spin-orbit gauge field strength of the Rashba and Dresselhaus interactions, when split into two Abelian field strengths, the Hamiltonian of the system can be re-expressed as a Landau level problem with a particular relation between the two coupling parameters. The quantum levels are created with up and down spins with opposite chirality and leads to the quantum spin Hall effect.  相似文献   

18.
The electronic structure, spin splitting energies, and g factors of paramagnetic In1-xMnxAs nanowires under magnetic and electric fields are investigated theoretically including the sp-d exchange interaction between the carriers and the magnetic ion. We find that the effective g factor changes dramatically with the magnetic field. The spin splitting due to the sp-d exchange interaction counteracts the Zeeman spin splitting. The effective g factor can be tuned to zero by the external magnetic field. There is also spin splitting under an electric field due to the Rashba spin-orbit coupling which is a relativistic effect. The spin-degenerated bands split at nonzero kz (kz is the wave vector in the wire direction), and the spin-splitting bands cross at kz = 0, whose kz-positive part and negative part are symmetrical. A proper magnetic field makes the kz-positive part and negative part of the bands asymmetrical, and the bands cross at nonzero kz. In the absence of magnetic field, the electron Rashba coefficient increases almost linearly with the electric field, while the hole Rashba coefficient increases at first and then decreases as the electric field increases. The hole Rashba coefficient can be tuned to zero by the electric field.  相似文献   

19.
Lax et al. [Phys. Rev. 11 (1975) 1365] discovered that a light beam in vacuum is not a transverse wave but does have a longitudinal field component. We investigate atomic and molecular electric dipole transitions induced by such a light beam, in particular, linearly polarized in a transverse plane. We derive the selection rules and the transition rates for various quantization axes using the paraxial approximation up to the first order of 1/kw, where k is the wave number and w is the transverse size of the light beam. The light beam is able to yield atomic spin polarization in the direction perpendicular to both the optical axis and the transverse electric field, and its magnitude is approximately 1/kw times that generated by a circularly polarized light wave with the similar intensity.  相似文献   

20.
In circularly polarized light the spins of the photons are aligned. When a short intense pulse of circularly polarized laser light is absorbed by a plasma, a torque is delivered initially to the electron species, resulting primarily in an opposing torque from an induced azimuthal electric field. This electric field, in general, has a curl and leads to the generation of an axial magnetic field. It also is the main means for transferring angular momentum to the ions. The time-dependent magnetic field has a magnitude proportional to the transverse gradient of the absorbed intensity but inversely proportional to the electron density, in contrast to earlier theories of the inverse Faraday effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号