首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 663 毫秒
1.
The Al Ga N-based deep ultraviolet(DUV) light-emitting diode(LED) is an alternative DUV light source to replace traditional mercury-based lamps. However, the state-of-the-art DUV LEDs currently exhibit poor wall-plug efficiency and low light output power, which seriously hinder their commercialization. In this work, we design and report a tunnel-junctioncascaded(TJC) DUV LED, which enables multiple radiative recombinations within the active regions. Therefore, the light output power of the TJC-DUV LEDs is more than doubled compared to the conventional DUV LED. Correspondingly, the wall-plug efficiency of the TJC-DUV LED is also significantly boosted by 25% at 60 m A.  相似文献   

2.
Progress with GaN-based light emitting diodes(LEDs) that incorporate nanostructures is reviewed,especially the recent achievements in our research group.Nano-patterned sapphire substrates have been used to grow an Al N template layer for deep-ultraviolet(DUV) LEDs.One efficient surface nano-texturing technology,hemisphere-cones-hybrid nanostructures,was employed to enhance the extraction efficiency of In GaN flip-chip LEDs.Hexagonal nanopyramid GaN-based LEDs have been fabricated and show electrically driven color modification and phosphor-free white light emission because of the linearly increased quantum well width and indium incorporation from the shell to the core.Based on the nanostructures,we have also fabricated surface plasmon-enhanced nanoporous GaN-based green LEDs using AAO membrane as a mask.Benefitting from the strong lateral SP coupling as well as good electrical protection by a passivation layer,the EL intensity of an SP-enhanced nanoporous LED was significantly enhanced by 380%.Furthermore,nanostructures have been used for the growth of GaN LEDs on amorphous substrates,the fabrication of stretchable LEDs,and for increasing the3-d B modulation bandwidth for visible light communication.  相似文献   

3.
基于不同衬底材料高出光效率LED芯片研究进展   总被引:1,自引:1,他引:0  
提高LED芯片的出光效率是解决LED光源大功率化和可靠性的根本。根据LED芯片所用衬底材料的不同,总结了近年来提高GaN基LED出光效率的研究进展,介绍了新的设计思路、工艺结构与制备方法。并从材料结构和衬底选取方面,对LED芯片未来的发展趋势进行了展望。  相似文献   

4.
研究了传统白光LED与蓝光激发的球冠形远程荧光粉白光LED在不同电流、不同热沉温度下的发光性能,并对其机理差异展开了探讨。实验结果表明:随热沉温度和驱动电流的上升,传统白光LED的量子效率和电光转换效率急剧下降,并导致其Y/B比(Yellow/Blue Ratio)下降,相关色温上升。而在远程荧光粉白光LED中,其量子效率、光转换效率和相关色温在相同实验条件下变化幅度都较小。由光强空间分布和Y/B比空间分布可知,远程荧光粉白光LED的光强分布呈类似蝠翼分布,且Y/B比空间均匀性远大于传统白光LED。  相似文献   

5.
H Lu  T Yu  G Yuan  X Chen  Z Chen  G Chen  G Zhang 《Optics letters》2012,37(17):3693-3695
The optical polarization properties of staggered AlGaN-AlGaN/AlN quantum wells (QWs) are investigated using the theoretical model based on the k·p method. The numerical results show that the energy level order and coupling relation of the valence subband structure change in the staggered QWs and the trend is beneficial to TE polarized transition compared to that of conventional AlGaN/AlN QWs. As a result, the staggered QWs have much stronger TE-polarized emission than conventional AlGaN-based QWs, which can enhance the surface emission of deep ultraviolet (DUV) light-emitting diodes (LEDs). The polarization control by using staggered QWs can be applied in high efficiency DUV AlGaN-based LEDs.  相似文献   

6.
结温与热阻制约大功率LED发展   总被引:23,自引:6,他引:17  
余彬海  王垚浩 《发光学报》2005,26(6):761-766
LED结温高低直接影响到LED出光效率、器件寿命、可靠性、发射波长等。保持LED结温往允许的范围内,是大功率LED芯片制备、器件封装和器件应用等每个环节都必须重点研究的关键因素,尤其是LED器件封装和器件应用设计必须着重解决的核心问题。首先介绍pn结结温对LED器什性能的影响,接着分析大功率LED结温与器件热阻的关系.基于对器件热阻的分析,得出了结温与热阻已经制约大功率LED进一步向更大功率发展的结论,并提出了如下两个观点:1.要在保持低成本和自然散热方式下提高LED器件的功率,根本的出路是提高光转换效率;2.在日前没有提高光转换效率的情况下,发展超过5W的大功率器件对工程应肘没有实质意义。  相似文献   

7.
Photonic crystals (PhCs) have attracted much attention during the last decade as a solution to overcome the low extraction efficiency of as‐grown light‐emitting diodes (LEDs). In this review we describe the underlying physics and summarize recent results obtained with PhC LEDs. Here, the main focus is on diffracting PhC. In order to quantify the benefit from the incorporation of PhCs for diffracting light a comparison by simulations between a PhC LED and a standard state‐of‐the‐art LED is carried out. Finally, the impact of the PhC on the LEDs emission characteristics will be discussed with respect to étendue‐limited applications.  相似文献   

8.
Wavelength-dependence of light extraction efficiency (LEE) in AlGaN-based ultraviolet (UV) light-emitting diode (LED) structures is numerically studied based on three-dimensional finite-difference time-domain methods. Due to strong UV light absorption in the p-GaN contact layer, LEE of the UV vertical LED structures remains to be only 6–7 % for the transverse-electric mode and 2–3 % for the transverse-magnetic mode, respectively. The effective LEE of UV LEDs is calculated by considering the optical polarization-dependent LEE, and is found to increase from 4 to 5.5 % as the wavelength increases from 260 to 360 nm. It is shown that the wavelength-dependence of LEE can partially explain the decrease in external quantum efficiency with decreasing wavelengths in AlGaN-based UV LEDs.  相似文献   

9.
Light emitting diodes (LEDs) have numerous advantages as light sources in projectors. LEDs are more compact, exhibit a larger color gamut, have a longer lifetime, and need a lower supply voltage. However, there is still one important disadvantage: the optical power per unit of étendue (luminance) of an LED is significantly low. As a result of the étendue limitations of LEDs, the projected flux on the screen will not be high. Despite this shortcoming, LED’s are still of great interest for low power applications because of their other superior properties. Thus we collect the available light flux optimally and combine multiple high luminance LEDs within the system. In this study we discuss three collection systems designed to collect the LED flux with high optical efficiency while retaining small device size. The best collection efficiency attained with our collection systems is 96%. The fabrication tolerance and cost of our collection systems are also analyzed.  相似文献   

10.
车振  张军  余新宇  陈哲 《应用光学》2015,36(4):606-611
为了提高GaN基LED芯片的光提取效率,以GaN基LED芯片为研究对象,建立了在蓝宝石衬底出光面和外延生长面上具有半球型图形的LED倒装芯片模型,并利用光学仿真软件对图形参数进行优化设计。实验结果表明:在蓝宝石衬底的出光面和外延生长面双面都制作凹半球型图形对芯片光提取效率的提高效果最好,并且当半球的半径为3 m,周期间距为7 m时,GaN基LED倒装芯片的最大光提取效率为50.8%,比无图形化倒装芯片的光提取效率提高了115.3%。  相似文献   

11.
陈湛旭  万巍  何影记  陈耿炎  陈泳竹 《物理学报》2015,64(14):148502-148502
在发光二极管(LED)的透明电极层上制作单层六角密排的聚苯乙烯(polystyrene, PS) 纳米球, 研究提高GaN基蓝光LED的出光效率. 采用自组装的方法在透明电极铟锡氧化物层上制备了直径分别约为250, 300, 450, 600和950 nm的PS纳米球, 并且开展了电致发光的研究. 结果表明, 在LED的透明电极层上附有PS纳米球能有效地提高LED的出光效率; 当PS纳米球的直径与出射光的波长比较接近时, LED的出光效率最优. 与参考样品相比, 在20 mA和150 mA工作电流下, 附有PS纳米球的样品的发光效率分别增加1.34倍和1.25倍. 三维时域有限差分方法计算表明, 该出光增强主要归因于附有PS纳米球的LED结构可以增大LED结构的光输出临界角, 从而提高LED的出光效率. 因此, 这是一种低成本的实现高效率LED的方法.  相似文献   

12.
Low-voltage silicon(Si)-based light-emitting diode(LED) is designed based on the former research of LED in Si-based standard complementary metal oxide semiconductor(CMOS) technology.The low-voltage LED is designed under the research of cross-finger structure LEDs and sophisticated structure enhanced LEDs for high efficiency and stable light source of monolithic chip integration.The device size of low-voltage LED is 45.85×38.4(μm),threshold voltage is 2.2 V in common condition,and temperature is 27 ℃.The external quantum efficiency is about 10-6 at stable operating state of 5 V and 177 mA.  相似文献   

13.
卢英杰  史志锋  单崇新  申德振 《中国物理 B》2017,26(4):47703-047703
Deep-ultraviolet(DUV) light-emitting devices(LEDs) have a variety of potential applications.Zinc-oxide-based materials,which have wide bandgap and large exciton binding energy,have potential applications in high-performance DUV LEDs.To realize such optoelectronic devices,the modulation of the bandgap is required.This has been demonstrated by the developments of Mg_xZn_(1-x)O and Be_xZn_(1-x)O alloys for the larger bandgap materials.Many efforts have been made to obtain DUV LEDs,and promising successes have been achieved continuously.In this article,we review the recent progress of and problems encountered in the research of ZnO-based DUV LEDs.  相似文献   

14.
In flat-type light-emitting-diode (LED) lighting systems, a planar light is formed using a luminance source positioned on the side of the system and light guide panel (LGP) or reflecting plates. Thus, such systems are favorable for their thinness, which allows a relatively small number of LEDs to be used. However, the application of a high-power LED light to a large-area lighting system yields Lambertian luminaires; therefore, a point or a discomfort glare is produced, which generally causes degradation of the luminance efficiency and uniformity. In this study, we solved the problems of luminance non-uniformity and inefficiency by adjusting the orientation of an applied LGP scattered pattern and removing the remaining glare. Through computer simulation, optical characteristics that increase the efficiency even in the case of low-output LEDs were found. Specifically, a scattered pattern vertically oriented relative to the direction of the incident light improves the luminance uniformity at the side of the system, while a scattered pattern oriented parallel to the direction of the incident light plays the role of a waveguide. We implemented a flat-type LED lighting system by fabricating a large-area LGP based on the computer-simulation results and using an extremely sensitive laser. The optical characteristics observed using the laser-processed LGP were identical to those obtained in the computer simulation. Therefore, for large-area flat-type LED lighting systems, we confirmed that adjusting the orientation of the LGP scattered pattern can increase the luminance efficiency and uniformity.  相似文献   

15.
AlGaInP大功率发光二极管发光效率与结温的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
目前,AlGaInP大功率发光二极管(LED)存在的主要问题是大电流工作时发热严重,主要是由于电流扩展不均匀、出光面电极对光子的阻挡和吸收以及器件材料与空气折射率之间的差距引起的全反射现象,这些因素造成大功率LED出光受到限制、发光效率低、亮度不高.提出了一种复合电流扩展层和复合分布式布拉格反射层(DBR)的新型结构LED,使得注入电流在有源区充分地扩散,同时提高了常规单DBR对光子的反射率.结果显示,这种新型结构LED比常规结构LED的性能得到了很大的提升,350 mA注入电流下两者的输出光功率分别为4 关键词: 复合电流扩展层 复合分布式布拉格反射层 出光效率 结温  相似文献   

16.
王红印  张军  陈哲  周冬花 《应用光学》2011,32(5):860-866
 针对国内大功率LED阵列光源舞台灯具在光束角度不可变和光能利用效率低等问题,提出利用透镜组变焦原理来设计阵列光源变焦透镜系统。基于透镜组变焦原理设计了单颗LED光源的变焦透镜组,高级光学系统分析模拟软件ASAP的计算结果显示:调焦范围为0~10 mm时,出光角度(1/10峰值角)的变化范围为18.5°~38.7°,光能利用效率在调焦距离为10 mm时达到78%以上。在此基础上,将单颗LED光源的变焦透镜组扩展为Red、Green、Blue各12颗共36颗LED的变焦透镜系统,进一步分析36颗LED阵列光源在不同排布方式下的出光角度及混色效果。ASAP计算结果显示:在调焦范围与单颗LED相同的情况下,LED阵列光源变焦透镜系统的出光角度(1/10峰值角)的变化范围为21°~38.6°,且3种颜色LED交叉排列的混色效果较好。由LED阵列的计算结果可知,与国内现有的大功率LED舞台灯具相比,在出光角度的变化范围和光能利用效率方面都得到了提高。  相似文献   

17.
The green light emitting diodes(LEDs)have lower quantum efficiency than LEDs with other emission wavelengths in the visible spectrum.In this research,a novel quantum well structure was designed to improve the electroluminescence(EL)of green InGaN-based LEDs.Compared with the conventional quantum well structure,the novel structure LED gained 2.14times light out power(LOP)at 20-mA current injection,narrower FWHM and lower blue-shift at different current injection conditions.  相似文献   

18.
The surface patterning of the indium tin oxide (ITO) transparent current layer has been investigated to improve the light extraction efficiency of GaN-based light-emitting diodes (LEDs). LEDs with periodic micro-hexagon patterned ITO have been fabricated utilizing standard lithography techniques and inductively coupled plasma (ICP) technology. The luminance intensity of the LED chips with patterned ITO following 160 s ICP etching was enhanced by about 50% compared to the LED chips with unpatterned ITO. Detailed processing parameters are provided. scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used to examine the micro-structures. The results indicate that the surface-patterned ITO technique could have potential applications in high-power GaN-based LEDs.  相似文献   

19.
MOCVD生长InGaN/GaN MQW紫光LED   总被引:8,自引:7,他引:1  
利用LP-MOCVD系统生长了InGaN/GaN MQW紫光LED外延片,双晶X射线衍射测试获得了2级卫星峰,室温光致发光谱的峰值波长为399.5nm,FWHM为15.5nm,波长均匀性良好。制成的LED管芯,正向电流20mA时,工作电压在4V以下。  相似文献   

20.
Park J  Shin M  Lee CC 《Optics letters》2004,29(22):2656-2658
We present a new technique for measuring the temperature profiles of visible LED chips by use of a nematic liquid crystal with IR laser illumination. The LEDs studied have a multi-quantum-well InGaN/GaN/sapphire structure. New features in this technique are the use of a high-power IR laser beam as the sensing light and the insertion of a color filter in the optical path to block the high-intensity LED light. For the LEDs measured, the conversion efficiency decreases by 70% when the junction temperature rises from 25 to 107 degrees C. This technique is a valuable tool for studying the performance of LEDs as a function of junction temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号