首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The reduction of 4‐nitrophenol (Nip) into 4‐aminophenol (Amp) by NaBH4, which is catalyzed by both binary and ternary yolk–shell noble‐metal/SnO2 heterostructures, is reported. The binary heterostructures contain individual Au or Ag nanoparticles (NPs) and the ternary heterostructures contain both Au and Ag NPs. The Au@SnO2 yolk–shell NPs are synthesized via a silica seeds‐mediated hydrothermal method. Subsequently, the Au@SnO2@Ag and Au@SnO2@Au yolk–shell–shell (YSS) NPs are synthesized, whereby SnO2 is located between the Au and Ag NPs. The morphology, composition, and optical properties of the as‐prepared samples are analyzed. For the binary heterostructures, the rate of the reduction reaction increases with decreasing particle size. The catalytic results demonstrate the synergistic effect of Au and Ag in the ternary metal–semiconductor heterostructures, which is beneficial to the catalytic reduction of Nip into Amp. Both the binary and ternary heterostructures exhibit significantly better catalytic performances than the corresponding bare Au and Ag NPs. It is envisaged that the current synthesized strategy will promote further interest in the field of bimetal NP‐based catalysis.  相似文献   

2.
The 3D scaffold type biocomposites of gelatin/silver nanoparticles were prepared through the silver nanoparticles (Ag NPs) formation in gelatin solution using solution plasma process (SPP) and their antifungal activity was evaluated. The mixture of 3% gelatin solution and silver precursor (AgNO3; 1–10 mM) was subject to discharge at high voltage (1600 V) under the controlled conditions to form the suspension of Ag NPs in the gelatin matrix. The freeze-drying process of lyophilization was employed to fabricate the 3D scaffold type biocomposite of gelatin/Ag NPs from the suspension. The water-insoluble property was improved by cross-linking using UV-irradiation (λ = 254 nm for 15 min). The physical and chemical characteristics of the biocomposite were investigated using UV–vis spectroscopy, EDS, FE-SEM, and TEM. The results indicated that the 3D scaffold biocomposite of gelatin/Ag NPs had spherical shape with approximately 11–12 nm of diameter. The antifungal activity analysis suggested that the biocomposite with Ag NPs could inhibit the growth of Candida albicans as well as that of hyphae and spores of Aspergillus parasiticus significantly. MIC of the biocomposite for C. albicans and A. parasiticus was determined as 80 μg/ml and 240 μg/ml of Ag NPs, respectively. The growth inhibition of 92.8% was observed in the biocomposite with 10 mM Ag against C. albicans.  相似文献   

3.
The silver nanoparticles (Ag NPs) have been immobilized onto silica microspheres through the adsorption and subsequent reduction of Ag+ ions on the surfaces of the silica microspheres. The neat silica microspheres that acted as the core materials were prepared through sol–gel processing; their surfaces were then functionalized using 3-mercaptopropyltrimethoxysilane (MPTMS). The major aims of this study were to immobilize differently sized Ag particles onto the silica microspheres and to understand the mechanism of formation of the Ag nano-coatings through the self-assembly/adsorption behavior of Ag NPs/Ag+ ions on the silica spheres. The obtained Ag NP/silica microsphere conglomerates were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). Their electromagnetic wave shielding effectiveness were also tested and studied. The average particle size of the obtained Ag NPs on the silica microsphere was found that could be controllable (from 2.9 to 51.5 nm) by adjusting the ratio of MPTMS/TEOS and the amount of AgNO3.  相似文献   

4.
A facile and novel way was reported here for the synthesis of hydrophobic Ag nanoparticles (NPs), using AgNO3, tri-n-octylphosphine (TOP) and sulfur (S) powder in process. TOP was used as solvent, reducing agent and stabilizer. S could chelate with excessive TOP to form trioctylphosphine sulfide (TOPS), which served as second capping agent. The hydrophobic Ag NPs could be transformed into hydrophilic state through ligand exchange. Furthermore, surface-enhanced Raman scattering (SERS) spectra of 4-aminothiophenol (4-ATP) were obtained on the hydrophobic and hydrophilic Ag NPs modified substrates, indicating that the as-synthesized Ag NPs had great potential for high sensitive optical detection applications.  相似文献   

5.
We report an enhancement of antibacterial properties of Ag nanoparticles (NPs) synthesized at room temperature using leaf extract of Azadirachta indica (Neem) following green synthesis route. To study such antibacterial properties Ag NPs of sizes within 9 nm to 17 nm were synthesized by varying the concentration of Neam leaf extract (NLE). The NP size and size distribution were seen to increase and decrease, respectively, with increase in NLE concentration. Also Ag NPs having a fixed size (~26 nm) was also synthesized by varying the precursor (AgNO3) concentration. It is noticed that concentration of NLE has significant effects on the control of NP size as well as size distribution whereas there is almost no role of precursor concentration of the NP size. All the Ag NPs are found to have face-centred-cubic crystal structure with preferential growth along (111) plane which is stable one. The peak of X-ray diffraction at ~32.4° (2θ value), which is prominent for low concentrations of NLE and precursor, is identified as (101) plane of Ag crystal. The generation and growth of Ag NPs had also been confirmed using electron microscopic studies. These Ag NPs show prominent surface plasmon resonance (SPR) absorption at ~ 420 nm confirming again the genesis of Ag NPs. The SPR peak shifts towards longer wavelength (redshift) with a corresponding reduction in full width at half maximum with increase in NP size. All of the samples containing Ag NPs show a broad blue photoluminescence (PL) emission at ~ 471 nm. Emission peak is seen to redshift with increase in NP size and is consistent with the optical absorption data. Such PL emission is argued as due to interband transition or plasmon luminescence. Being biocompatible of the green synthesis process, antibacterial properties of these Ag NPs were studies in details considering all the samples (with varied NP size for one set and with fixed NP size for other set of samples). As per our knowledge this is the first report of size related total study of Ag NPs, showing increased antibacterial effect as size decreased and equal antibacterial effect as size equals. It is found that smaller Ag NPs has enhanced antibacterial effects due to large surface area to volume ratio in comparison with bigger sized Ag NPs.  相似文献   

6.
We report on the preparation and characterization of Ag/LiCoO2 nanofibers (NFs) via the sol–gel electrospinning (ES) technique. Ag nanoparticles (NPs) were produced in an aqueous polyvinyl pyrrolidone (PVP) solution by using AgNO3 precursor. A viscous lithium acetate/cobalt acetate/polyvinylalcohol/water (LiAc/(CoAc)2/PVA/water) solution was prepared separately. A Ag NPs/PVP/water solution was prepared and added to this viscous solution and magnetically stirred to obtain the final homogeneous electrospinning solution. After establishing the proper electrospinning conditions, as-spun precursor Ag/LiAc/Co(Ac)2/PVA/PVP NFs were formed and calcined in air at a temperature of 600 °C for 3 h to form well-crystallized porous Ag/LiCoO2 NFs. Various analytical characterization techniques such as UV–vis, SEM, TEM, TGA, XRD, and XPS were performed to analyze Ag NPs, as-spun and calcined NFs. It was established that Ag NPs in the precursor Ag/LiAc/Co(Ac)2/PVA/PVP NFs are highly self-aligned as a result of the behavior of Ag in the electric field of the electrospinning setup and the interaction of Ag ions with Li and Co ions in the NF. Ag/LiCoO2 NFs exhibit a nanoporous structure compared with un-doped LiCoO2 NFs because the atomic radius of Ag is larger than the radius of Co and Li ion; thus, no substitution between Ag and Li or Ag and Co atoms occurs, and Ag NPs are located at the interlayer of LiCoO2 while some are left in the fiber.  相似文献   

7.
Silver nanoparticles (Ag NPs) were produced on cotton fibers by reduction of [Ag(NH3)2]+ complex with glucose. Further modification of the fibers coated by Ag NPs with hexadecyltrimethoxysilane led to superhydrophobic cotton textiles. Scanning electron microscopy images of the textiles showed that the treated fibers were covered with uniform Ag NPs, which generate a dual-size roughness on the textiles favouring the formation of superhydrophobic surfaces, and the Ag NPs formed dense coating around the fibers rendering the intrinsic insulating cotton textiles conductive. Antibacterial test showed that the as-fabricated textiles had high antibacterial activity against the gram-negative bacteria, Escherichia coli. These multifunctional textiles might find applications in biomedical electronic devices.  相似文献   

8.
Abstract  The anisotropic gold and spherical–quasi-spherical silver nanoparticles (NPs) were synthesized by reducing aqueous chloroauric acid (HAuCl4) and silver nitrate (AgNO3) solution with the extract of phyllanthin at room temperature. The rate of reduction of HAuCl4 is greater than the AgNO3 at constant amount of phyllanthin extract. The size and shape of the NPs can be controlled by varying the concentration of phyllanthin extract and thereby to tune their optical properties in the near-infrared region of the electromagnetic spectrum. The case of low concentration of extract with HAuCl4 offers slow reduction rate along with the aid of electron-donating group containing extract leads to formation of hexagonal- or triangular-shaped gold NPs. Transmission electron microscopy (TEM) analysis revealed that the shape changes on the gold NPs from hexagonal to spherical particles with increasing initial concentration of phyllanthin extract. The Fourier transform infrared spectroscopy and thermogravimetric analyses reveal that the interaction between NPs and phyllanthin extract. The cyclic voltammograms of silver and gold NPs confirms the conversion of higher oxidation state to zero oxidation state. Graphical abstract  Anisotropic gold and silver nanoparticles were synthesized by a simple procedure using phyllanthin extract as reducing agent. The rate of bioreduction of AgNO3 is lower than the HAuCl4 at constant concentration of phyllanthin extract. The required size of the nanoparticles can be prepared by varying the concentration of phyllanthin with AgNO3 and HAuCl4.   相似文献   

9.
Silver nanoparticles (Ag NPs) have been homogeneously deposited onto graphene oxide (GO) nanosheets by an optimal method, in which N,N-dimethylformamide (DMF) as a co-dispersant of GO and reductant of sliver ions is added to an aqueous suspension of GO and AgNO3. GO nanosheets are uniformly covered by Ag NPs with a narrow size distribution and inter-particle gap. Raman signals of GO are greatly enhanced after deposition owing to the charge transfer interaction of GO with Ag NPs. The GO/Ag composite can be further utilized as an effective surface-enhanced Raman scattering (SERS) active substrate. Several new Raman bands and frequency shifts are clearly observed in using 4-aminothiophenol (4-ATP) as a Raman probe on GO/Ag compared to the normal Raman spectrum of solid 4-ATP. The Raman enhancement arises from a major electromagnetic effect and a minor chemical effect.  相似文献   

10.

To improve the stability of polymeric micelles, here we describe interlayer-crosslinked micelles prepared from star-shaped copolymer via click chemistry. The formation of interlayer-crosslinked micelles was investigated and confirmed by proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and fluorescence spectroscopy. The morphology of un-crosslinked micelles and crosslinked micelles observed by transmission electron microscope is both uniform nano-sized spheres (approximately 20 nm). The crosslinking enhances the stability of polymeric micelles and improves the drug loading capacity of polymeric micelles. The interlayer-crosslinked micelles prepared from star-shaped copolymer and a crosslinker containing a disulfide bond are reduction-responsive and can release the drug quickly in the presence of the reducing agents such as glutathione (GSH).

  相似文献   

11.
《Current Applied Physics》2010,10(6):1442-1447
This paper presents a novel, inexpensive and one-step approach for synthesis of silver nanoparticles (Ag NPs) using arc discharge between titanium electrodes in AgNO3 solution. The resulting nanoparticles were characterized using UV–Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Silver nanoparticles of 18 nm diameter were formed during reduction of AgNO3 in plasma discharge zone. Optical absorption spectroscopy of as prepared samples at 15 A arc current in AgNO3 solution shows a surface plasmon resonance around 410 nm. It was found that sodium citrate acts as a stabilizer and surface capping agent of the colloidal nanoparticles. SEM images exhibit the increase of reduced nanoparticles in 6 min arc duration compared with 1 min arc duration. TEM image of the sample prepared at 6 min arc duration shows narrow size distribution with 18 nm mean particle size. Antibacterial activities of silver nanoparticles were investigated at the presence of Escherichia coli (E-coli) bacteria.  相似文献   

12.
《Current Applied Physics》2020,20(11):1201-1206
Light-emitting organic semiconductors have attracted considerable attention for the nanoscale fabrication of organic-based displays and their potential application in optoelectronics, plasmonics, and photonics. In this study, core-shell hybrid nanostructures of organic rubrene coated on Ag nanoparticles (NPs) have been synthesized using a chemical reduction method. The thickness of the rubrene shell was 2.6–6.0 nm and the diameter of the Ag core was 30–70 nm. The optical and structural properties of the Ag/rubrene core-shell NPs were tuned by hydrothermal (HT) treatment at 190 °C. The Ag/rubrene core-shell NPs were characterized by high-resolution transmission electron microscopy and energy-dispersive X-ray (EDX) spectroscopy before and after the HT treatment, and their structural properties were confirmed through X-ray diffraction (XRD) analysis. XRD peaks related to an orthorhombic phase were observed along with the original triclinic crystal structure of the rubrene shell, and the triclinic crystal domain size increased from 28.2 nm to 30.8 nm owing to the HT treatment. Interestingly, the green light emission (λem = 550 nm) of the Ag/rubrene core-shell NPs changed to blue light emission (λem = 425 nm), increasing in intensity through the HT treatment. This is caused by the crystal change with H-type aggregation and enhanced energy transfer from a surface plasmon resonance.  相似文献   

13.
In this study, two amino acid copolymers containing anthracene incorporated either on the one end, poly(N-acryloyl-l-phenylalanine-co-methyl methacrylate)-1 or as pendant groups, poly-(N-acryloyl-l-phenylalanine-co-methyl methacrylate)-2 were prepared directly from N-acryloyl-l-phenylalanine (APhe) and methyl methacrylate (MMA) through atom transfer radical polymerization (ATRP) and microwave-assisted synthesis. In the first case, 9-(chloromethyl)anthracene was used as an ATRP-initiator to obtain a copolymer that contains amino acid sequences and anthracene end-capped units (0.03 molar fraction). Rapid synthesis of copolymer under microwave irradiation (250 W) in the presence of 1,1′-azobis(cyclohexanecarbonitrile) used as an initiator was followed of a functionalization of the formed copolymer with an anthracene derivative yielding copolyacrylate with pendant anthracene (0.02 molar fraction). The structure of the copolymers was verified by 1H NMR, UV-Vis and FTIR spectroscopy, gel permeation chromatography (GPC), and fluorescence spectroscopy. The fluorescence quenching process of anthracene which exists in copolymers by FeCl3, cobalt acetate, nitrobenzene, maleic anhydride, diethylaniline and nitromethane in DMF solutions shows that this involves an electron transfer between the excited state anthracene and the present transitional metal cations, more efficiently being FeCl3 for poly-(APhe-co-MMA)-1 and cobalt acetate for the latter copolymer.  相似文献   

14.
Novel synthesis of amine-stabilized Au–Ag alloy nanoparticles with controlled composition has been devised using poly(ethylenimine) (PEI) as a reducing and a stabilizing agent simultaneously. The composition of Au–Ag alloy nanoparticles was readily controlled by varying the initial relative amount of HAuCl4 and AgNO3. Due to the presence of abundant amine functional groups in PEI, which could act as the dissolving ligand for AgCl, the precipitation problem of Ag+ in the presence of Cl from the gold salt was avoided. On this basis, the relatively high concentrations of HAuCl4 and AgNO3 salts were used for the fabrication of Au–Ag alloy nanoparticles. The PEI thus plays triple roles in this study that include the co-reducing agents for HAuCl4 and AgNO3, the stabilizing agents for Au–Ag alloy nanoparticles, and even the dissolving agents for AgCl. As a novel material for use in catalysis, the Au–Ag alloy nanoparticles including pure Au and Ag samples were exploited as catalysts for the reduction of 4-nitrophenol in the presence of NaBH4. As the Au content was increased in the Au–Ag alloy nanoparticles, the rate constant of the reduction was exponentially increased from pure Ag to pure Au.  相似文献   

15.
In this study, poly(?-caprolactone)-based polyurethane (PCL-PU) nanofibers containing Ag nanoparticles for use in antimicrobial nanofilter applications were prepared by electrospinning 8 wt% PCL-PU solutions containing different amounts of AgNO3 in a mixed solvent consisting of DMF/THF (7/3 w/w). The average diameter of the pure PCL-PU nanofibers was 560 nm and decreased with increasing concentration of AgNO3. The PCL-PU nanofiber mats electrospun with AgNO3 exhibited higher tensile strength, tensile modulus, and lower elongation than the pure PCL-PU nanofiber mats. Small Ag nanoparticles were produced by the reduction of Ag+ ions in the PCL-PU solutions. The average size and number of the Ag nanoparticles in the PCL-PU nanofibers were considerably increased after being annealed at 100 °C for 24 h. They were all sphere-shaped and evenly distributed in the PCL-PU nanofibers, indicating that the PCL-PU chains stabilized the Ag nanoparticles well.  相似文献   

16.
The silver nanoparticles with about 10 nm diameter were immobilized onto the halloysite nanotubes (HNTs) via the in situ reduction of AgNO3 by polyol process. The silver nanoparticles supported halloysite nanotubes (Ag/HNTs), with Ag content of about 11%, were used for the catalyzed reduction of 4-nitrophenol (4-NP) with NaBH4 in alkaline aqueous solutions. The effect of the reduction of 4-NP catalyzed by the catalysts in the presence of variable concentration NaBH4 was investigated. It was found that the reduction rate increased with the increasing of the amounts of NaBH4. And the larger amounts of NaBH4 reduced the induction time.  相似文献   

17.
The present study is concerned with the preparation of Ag nanostructures by reduction of AgNO3 with zinc foil by galvanic displacement reaction. The results confirm that the synthesis route has a direct influence on the morphologies of Ag nanostructures. In addition, the effect of synthesis conditions, including the concentration of AgNO3 aqueous solutions and reaction time, are investigated. X-ray diffraction (XRD), filed emission scanning electron microscope (SEM) and UV-vis spectra are used to characterize the obtained products. A reasonable formation process of Ag nanostructures is proposed based on the characterization results.  相似文献   

18.
We report a simple and cost effective way for synthesis of metallic nanoparticles (Au and Ag) using natural precursor clove. Au and Ag nanoparticles have been synthesized by reducing the aqueous solution of AuCl4 and AgNO3 with clove extract. One interesting aspect here is that reduction time is quite small (few minutes instead of hours as compared to other natural precursors). We synthesized gold and silver nanoparticles of different shape and size by varying the ratio of AuCl4 and AgNO3 with respect to clove extract, where the dominant component is eugenol. The evolution of Au and Ag nanoparticles from the reduction of different ratios of AuCl4 and AgNO3 with optimised concentration of the clove extract has been evaluated through monitoring of surface plasmon behaviour as a function of time. The reduction of AuCl4 and AgNO3 by eugenol is because of the inductive effect of methoxy and allyl groups which are present at ortho and para positions of proton releasing –OH group as two electrons are released from one molecule of eugenol. This is followed by the formation of resonating structure of the anionic form of eugenol. The presence of methoxy and allyl groups has been confirmed by FTIR. To the best of our knowledge, use of clove as reducing agent, the consequent very short time (minutes instead of hours and without any scavenger) and the elucidation of mechanism of reduction based on FTIR analysis has not been attempted earlier.  相似文献   

19.
The objective of this work is to investigate the effect of Ag nanoparticles on critical current of YBa2Cu3O7?δ (YBCO) superconductor. Ag nanoparticles with different particle sizes from 30 to 1000 nm were prepared through the chemical reduction of AgNO3 in an alcohol solution. Then, samples of YBCO superconductors were doped by 1 and 2 wt.% of Ag nanoparticles with different sizes. Samples were characterized with XRD, SEM and EDX measurements. Critical current measurements were performed using a standard four-probe technique at liquid nitrogen temperature. The results showed by increasing of Ag nanoparticles up to 700 nm the Jc increases, but decreases by further increase in Ag particles size. The critical current enhancement is attributed to the improved connectivity between the grain boundaries and better crystallization of the grains.  相似文献   

20.
In this article, we have reported on the synthesis of ultra-highly concentrated (5.88 M), well-stable Ag nanoparticles (AgNPs). The AgNPs were formed by hydrothermal heat treatment of an aqueous solution of poly [(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-(1-vinylpyrrolidone)] (PQ11), a kind of cationic polyeletrolyte, in the presence of AgNO3 powder at 170 °C, without the additional step of introducing other reducing agents and protective agents. Transmission electron microscopy (TEM) observations reveal that the as-formed AgNPs mainly consist of small nanoparticles about 10 nm in diameter. Most importantly, it was found that such dispersion can form stable films on bare electrode surfaces and the AgNPs contained therein still exhibit notable catalytic performance for reduction of hydrogen peroxide (H2O2). This H2O2 sensor has a fast amperometric response time of less than 3 s. Its linear range is estimated to be from 0.1 to 60 mM (r = 0.993), and the detection limit is estimated to be 1.6 μM at a signal-to-noise ratio of 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号