首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
Under the Markov approximation,the quantum dynamics of cooled atoms in the presence of Bose-Einstein condensates is studied.A master equation governing the evolution of such a system is derved.Using this master equation,the distribution of the atoms in the excited states at finite temperature and the dynamics of the excited atom at zero temperature are given and discussed.  相似文献   

2.
We present a non-Markovian master equation for a qubit interacting with a general reservoir, which is derived according to the Nakajima-Zwanzig and the time convolutionless projection operator technique. The non-Markovian solutions and Markovian solution of dynamical decay of a qubit are compared. The results indicate the validity of non-Markovian approach in different coupling regimes and also show that the Markovian master equation may not precisely describe the dynamics of an open quantum system in some situation. The non-Markovian solutions may be effective for many qubits independently interacting with the heated reservoirs.  相似文献   

3.
4.
王东升  郑雨军 《中国物理 B》2010,19(8):83202-083202
<正>We theoretically study the statistics of photon emission of a single multi-level quantum system by employing the generating functions approach developed recently.The generalized decay constants are included in a single multi-level quantum system with quasi-degenerated levels in this work although they are normally neglected in the absence of (quasi-)degeneracies in a multi-level quantum system within the rotating wave approximation.The quantum beats,the line shapes and the Mandel's Q parameters,etc.are studied.  相似文献   

5.
We discuss the dynamics of Bose-Einstein condensates in a double-well potential subject to decoherenee (or particle loss). Starting from the full many-body dynamics described by the master equation, an effective Gross- Pitaevskii-like equation is derived in the mean-field approximation. By numerically solving the GP equation, we find that macroscopic quantum self-trapping disappears for strong decoherence, while generalized self-trapping occurs under weak decoherence. The fixed points have been calculated, and we find that an abrupt change from elliptic to an attractor and a repeller occurs, reflecting the metastable behavior of the system around these points.  相似文献   

6.
Using the linear approximation method, we study a single-mode laser system driven by colored pump noise and quantum noise with coupling between the real and imaginary parts when the laser is operated well above threshold. The steady state mean intensity fluctuation C(0) and signal-to-noise ratio (SNR) are calculated. It is found that there is a maximum in SNR when there is a minimum in the fluctuation of laser system if the coupling coefficient between real and imaginary parts of the quantum noise equals zero.  相似文献   

7.
Using the linear approximation method, we study a single-mode laser system driven by colored pump noise and quantum noise with coupling between the real and imaginary parts when the laser is operated well above threshold. The steady state mean intensity fluctuation C(0) and signal-to-noise ratio (SNR) are calculated. It is found that there is a maximum in SNR when there is a minimum in the fluctuation of laser system if the coupling coefficient between real and imaginary parts of the quantum noise equals zero.  相似文献   

8.
In this paper, we consider the macroscopic quantum tunnelling and self-trapping phenomena of Bose-Einstein condensates (BECs) with three-body recombination losses and atoms feeding from thermal cloud in triple-well potential. Using the three-mode approximation, three coupled Gross-Pitaevskii equations (GPEs), which describe the dynamics of the system, are obtained. The corresponding numerical results reveal some interesting characteristics of BECs for different scattering lengths. The self-trapping and quantum tunnelling both are found in zero-phase and :r-phase modes. Furthermore, we observe the quantum beating phenomenon and the resonance character during the self-trapping and quantum tunnelling. It is also shown that the initial phase has a significant effect on the dynamics of the system.  相似文献   

9.
We investigate the quantum dynamics of two defect centers in solids,which are coupled by vacuum-induced dipole-dipole interactions.When the interaction between defects and phonons is taken into account,the two coupled electron-phonon systems make up two equivalent multilevel atoms.By making Born-Markov and rotating wave approximations,we derive a master equation describing the dynamics of the coupled multilevel atoms.The results indicate the concepts of subradiant and superradiant states can be applied to these systems and the population transfer process presents different behaviors from those of the two dipolar-coupled two-level atoms due to the participation of phonons.  相似文献   

10.
We study the dynamics of two-level atomic systems(qubits) subject to a double-layer environment that consists of a network of single-mode cavities coupled to a common reservoir. A general exact master equation for the dynamics of a qubit system can be obtained by the quantum-state-diffusion(QSD) approach, which is extended to our spin-cavity-boson model. The quantumness of the atoms comprising coherence and entanglement is investigated for various configurations of the double-layer environment.The findings indicate that parametric control is available for the preservation and generation of system-quantumness by regulating the cavity network. Moreover the underlying physics is profoundly revealed by an effective model obtained by a unitary transformation. Therefore, our work provides an interesting proposal to protect the quantumness of open systems in the framework of a double-layer environment containing bosonic modes.  相似文献   

11.
Using a measure for the divisibility of a dynamical map, we study the non-Markovian character of a quantum evolution of a spin-S system, which is in an external field and weakly coupled to a bosonic bath with a certain temperature. The finite-temperature dynamics of the open system is obtained by the time-convolutionless master equation in the secular approximation. Besides the influence of the environmental spectral density function, the external field and low temperatures can affect the quantum non-Markovianity. It is found out that the non-Markovian feature of a dynamical map of a high-dimensional spin system is noticeable in contrast to that of a low-dimension spin system.  相似文献   

12.
Using a measure for the divisibility of a dynamical map,we study the non-Markovian character of a quantum evolution of a spin-S system,which is in an external field and weakly coupled to a bosonic bath with a certain temperature.The finite-temperature dynamics of the open system is obtained by the time-convolutionless master equation in the secular approximation.Besides the influence of the environmental spectral density function,the external field and low temperatures can afect the quantum non-Markovianity.It is found out that the non-Markovian feature of a dynamical map of a high-dimensional spin system is noticeable in contrast to that of a low-dimension spin system.  相似文献   

13.
The stochastic and quantum dynamics of open quantum systems interacting with stochastic perturbations in considered. The master equations for one time and multi-time correlation functions of such a system are derived to all orders in the interaction with the stochastic perturbations. The importance of the non-markovian character of such equations in the study of various problems in optical resonance is discussed. The simplified form of the non-markovian master equations in Born approximation is also given. It is shown that such non-markovian master equations in Born approximation are exact if there is only one random perturbation, of the telegraphic signal type, acting on the system. The master equations for the linear response functions of an open system interacting with stochastic perturbations are also derived. The non-markovian master equations for multitime correlations are used to study the behaviour of two level atoms interacting with fluctuating laser fields. Both amplitude and phase fluctuations are taken into account. Explicit results are presented for the spectrum of resonance fluorescence, absorption spectrum, photon antibunching effects etc. The calculations are done for arbitrary values of the relaxation parameters and intial conditions. In general the fluorescence spectrum is found to be asymmetric for off resonant fields.  相似文献   

14.
We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.  相似文献   

15.
Jing J  Yu T 《Physical review letters》2010,105(24):240403
The non-Markovian dynamics of a three-level quantum system coupled to a bosonic environment is a difficult problem due to the lack of an exact dynamic equation such as a master equation. We present for the first time an exact quantum trajectory approach to a dissipative three-level model. We have established a convolutionless stochastic Schr?dinger equation called the time-local quantum state diffusion (QSD) equation without any approximations, in particular, without Markov approximation. Our exact time-local QSD equation opens a new avenue for exploring quantum dynamics for a higher dimensional quantum system coupled to a non-Markovian environment.  相似文献   

16.
It is shown that the effective Hamiltonian representation, as it is formulated in author??s papers, serves as a basis for distinguishing, in a broadband environment of an open quantum system, independent noise sources that determine, in terms of the stationary quantum Wiener and Poisson processes in the Markov approximation, the effective Hamiltonian and the equation for the evolution operator of the open system and its environment. General stochastic differential equations of generalized Langevin (non-Wiener) type for the evolution operator and the kinetic equation for the density matrix of an open system are obtained, which allow one to analyze the dynamics of a wide class of localized open systems in the Markov approximation. The main distinctive features of the dynamics of open quantum systems described in this way are the stabilization of excited states with respect to collective processes and an additional frequency shift of the spectrum of the open system. As an illustration of the general approach developed, the photon dynamics in a single-mode cavity without losses on the mirrors is considered, which contains identical intracavity atoms coupled to the external vacuum electromagnetic field. For some atomic densities, the photons of the cavity mode are ??locked?? inside the cavity, thus exhibiting a new phenomenon of radiation trapping and non-Wiener dynamics.  相似文献   

17.
The dynamics of open quantum systems is formulated in terms of a probability distribution on the underlying Hilbert space. Defining the time-evolution of this probability distribution by means of a Liouvillemaster equation the time-dependent wave function of the system becomes a stochastic Markov process in the sense of classical probability theory. It is shown that the equation of motion for the two-point correlation function of the random wave function yields the quantum master equation for the statistical operator. Stochastic simulations of the Liouville-master equation are performed for a simple example from quantum optics and are shown to be in perfect agreement with the analytical solution of the corresponding equation for the statistical operator.  相似文献   

18.
19.
A. Isar  W. Scheid 《Physica A》2002,310(3-4):364-376
A master equation for the deformed quantum harmonic oscillator interacting with a dissipative environment, in particular with a thermal bath, is derived in the microscopic model by using perturbation theory. The coefficients of the master equation and of equations of motion for observables depend on the deformation function. The steady-state solution of the equation for the density matrix in the number representation is obtained and the equilibrium energy of the deformed harmonic oscillator is calculated in the approximation of small deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号