首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We have successfully resolved and visualized the structure of some chemically functionalized carbon nanotubes (CNTs) using high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS). To represent the chemically modified CNT, we selected three systems. The first system is oxidized and surface thiolated MWCNT, the second system is Dy3N@C80 peapods prepared by depositing trimetal nitride fullerenes into SWCNT. The formed structure is the Dy3N@C80@SWCNT. The third system is the conventional C60@SWCNT fullerene peapods, fluorinated by xenon difluoride (XeF2) up to 18% of F. We achieved detection of very low amount (0.6%) of sulfur and proved covalent bonding onto MWCNT surface. We present EELS imaging of the separated metal clusters inside endohedral metallofullerene peapod bundles and in the fluorinated C60 peapods we show homogeneous fluorination across the whole surface.  相似文献   

2.
Electronic properties of Gd@C82 metallofullerene peapods, (Gd@C82)n@SWNTs, were investigated by electron energy-loss spectroscopy (EELS), scanning tunneling microscopy and spectroscopy (STM/STS), and field-effect transistor (FET) transport measurements. The results indicate that the electronic structure of Gd@C82 metallofullerene peapods is completely different from that of intact single-walled nanotubes (SWNTs). For example, Gd@C82-peapod-FETs show ambipolar behavior which is not observed in the empty SWNT-FETs under our experimental conditions. Furthermore, in semiconducting nanotubes the band gap can be varied from ∼0.5 to ∼0.1 eV using inserted Gd@C82 endohedral metallofullerenes with a spatial periodicity of 1.1 to 8.0 nm, depending on the density of the fullerenes. The present findings suggest that metallofullerene peapods may point the way toward novel electronic devices. Received: 6 September 2002 / Accepted: 25 October 2002 / Published online: 10 March 2003 RID="*" ID="*"Corresponding author. Fax: +81-52/789-1169, E-mail: noris@cc.nagoya-u.ac.jp  相似文献   

3.
We present a comparative study of fluorinated single wall carbon nanotubes and C60 peapods. The fluorination was carried out by xenon difluoride treatment at moderate temperature (100 °C). The fluorination level was determined by EDX. In empty nanotubes a fluorination level of 0.8 at.% was obtained, whereas the same treatment leads to 18 at.% in peapods (corresponding to a gross stoichiometry of C4F). TEM images show that this fluorination procedure does not affect the peapod structure. The elemental mapping carried out by EELS reveals homogenous distribution of fluorine along the carbon nanotube bundle. This chemical treatment is found to change the electrical properties of carbon nanotubes in bucky papers. Four-probe measurements indicate a conductivity decrease by up to two orders of magnitude at room temperature. The temperature dependence of the conductivity indicates a significant change in the charge carrier density of this system. Moreover, a non-linear behavior of the IV characteristic is observed below 50 K in fluorinated peapods.  相似文献   

4.
Imaging the doping elements is critical for understanding the photocatalytic activity of doped TiO2 thin film. But it is still a challenge to characterize the interactions between the dopants and the TiO2 lattice at the atomic level. Here, we use high angle annular dark-field/annular bright-field scanning transmission electron microscope (HAADF/ABF-STEM) combined with electron energy loss spectroscopy (EELS) to directly image the individual Cr atoms doped in anatase TiO2(001) thin film from [100] direction. The Cr dopants, which are clearly imaged through the atomic-resolution EELS mappings while can not be seen by HADDF/ABF-STEM, occupy both the substitutional sites of Ti atoms and the interstitial sites of TiO2 matrix. Most of them preferentially locate at the substitutional sites of Ti atoms. These results provide the direct evidence for the doping structure of Cr-doped A-TiO2 thin film at the atomic level and also prove the EELS mapping is an excellent technique for characterizing the doped materials.  相似文献   

5.
The effects of potassium on the adsorption and dissociation of CH3Cl on a Pd(100) surface has been investigated by ultraviolet photoelectron spectroscopy (UPS), Auger electron spectroscopy (AES), electron energy loss spectroscopy (in the electronic range EELS), temperature-programmed desorption (TPD) and work function change. In contrast to the clean surface, the adsorption of CH3Cl caused a significant work function increase, 0.9-1.4 eV, of potassium-dosed Pd. Preadsorbed K enhanced the binding energy of CH3C1 to the surface and induced the dissociation of adsorbed molecules. The extent of the dissociation increased almost linearly with the potassium content. The appearance of a new emission in the UPS spectrum at 9.2 eV, attributed to adsorbed CH3 species, and the low-temperature formation of ethane suggest that a fraction of adsorbed CH3Cl dissociates even at 115–125 K on potassium-dosed Pd(100). At the same time, a significant part of adsorbed CH3 radical is stabilized, the reaction of which occurs only at 250–300 K. By means of TPD measurements, H2, CH4, C2H6, C2H4, KCl and K were detected in the desorbing gases. The results are interpreted by assuming a through-metal electronic interaction at low potassium coverage and by a direct interaction of the Cl in the adsorbed CH3Cl with potassium at high potassium coverage. The latter proposal is supported by the electron excited Auger fine structure of the Cl signal and by the formation of KCl in the desorbing gases.  相似文献   

6.
We have investigated hole doped (by lithium) and electron-doped (by nickel metal) NiO with photoemission (PES), inverse photoemission (IPES) and low and high energy electron energy loss spectroscopy (EELS). Both types of doping create empty states approximately in the middle of the charge transfer gap of undoped NiO.  相似文献   

7.
An original approach for measuring the depth profile of melting and metallization of the Si(111) and Si(001) surfaces is proposed and applied. The different probing depths of the Auger electron and electron energy loss (EELS) spectroscopies are exploited to study the number of molten and metallic layers within 5-30 ? from the surface up to about 1650 K. Melting is limited to 3 atomic layers in Si(001) in the range 1400-1650 K while the number of molten layers grows much faster (5 layers at about 1500 K) in Si(111) as also indicated by the L(3)-edge shift observed by EELS. The relationship between melting and metallization is briefly discussed.  相似文献   

8.
Diamond-like carbon (DLC) films doped with nitrogen and oxygen were deposited on silicon(100) and polytetrafluoroethylene (PTFE) substrates by hot wire plasma sputtering of graphite. The morphology and chemical composition of deposited films has been characterized by scanning electron microscopy, XPS, Auger, FTIR spectroscopy and micro-Raman scattering. Plasmon loss structure accompanying the XPS C 1s peak and electron energy loss spectroscopy (EELS) in reflection mode was used to study the fraction of sp3 bonded C atoms and the density of valence electrons. Raman spectra show two basic C–C bands around 1575 cm-1 (G line) and 1360 cm-1 (D line) . Auger depth profiling spectroscopy was used to measure the spatial distributions of C, N and O atoms in the surface layer of DLC films. The fraction of sp3 bonded atoms of about 40% was detected in DLC films by XPS plasmon loss and EELS techniques. Nitrile and iso-nitrile groups observed in FTIR spectra demonstrated the existence of sp bonded carbon in doped DLC films. The typical for DLC films specific density 1.7–1.8 g/cm3 was obtained from EELS and XPS data. PACS 52.77.Dq; 81.65.-b; 82.80.Pv  相似文献   

9.
吴鸣成 《物理学报》1988,37(11):1785-1793
本文用X射线光电子能谱(XPS),紫外光电子能谱(UPS),电子能量损失谱(EELS)和低能电子衍射(LEED)研究了O与预覆盖K的Ag(110)表面相互作用及其性质。在低覆盖度K下,发现有两种O的吸附态,经鉴别为溶解到表面下的O2-和表面上吸附的Ox-增加K的覆盖度,出现分子状态的吸附物O2δ-,它与表面下存在的K相联系。XPS和UPS均清楚地显示出对应于三种不同吸附态的光电子发射峰。Ag(110)表面预覆盖K后的粘滞系数大大增加。K和O的共吸附引起它们彼此向Ag(110)表面下的溶解。LEED实验结果表明,清洁Ag(110)表面覆盖单层K原子后衍射图形从(1×1)变到(1×2),再吸附O后表面吸附层结构变为(2×1)。另外,结合UPS和EELS测量初步考察了O/K/Ag(110)共吸附系统的电子结构。本文还提出了一个共吸附模型来解释这些现象。 关键词:  相似文献   

10.
Double-walled carbon nanotubes (DWNTs) encapsulating C60 fullerenes were successfully synthesized by gas phase diffusion method. The obtained peapods were examined using high-resolution transmission electron microscopy (HRTEM). The HRTEM images indicate that the ordered packing phases of fullerene molecules inside are sensitively related to the inner-tube radius of DWNTs. Also, Raman measurements were carried out for the first time to characterize DWNTs peapods. There are obvious differences between the Raman spectrum of DWNTs peapods and that of SWNTs peapods. The intensities of resonances from C60 in the former are much stronger than those in the latter. In addition, changes of tangential mode (TM) and radial breathing mode (RBM) of DWNTs after C60 doping were observed. The possible reasons are discussed in the text.  相似文献   

11.
Nitrogen-doped single-walled carbon nanotubes (CNx-SWNTs) with tunable dopant concentrations were synthesized by chemical vapor deposition (CVD), and their structure and elemental composition were characterized by using transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS). By comparing the Raman spectra of pristine and doped nanotubes, we observed the doping-induced Raman G band phonon stiffening and 2D band phonon softening, both of which reflect doping-induced renormalization of the electron and phonon energies in the nan- otubes and behave as expected in accord with the n-type doping effect. On the basis of first principles calculations of the distribution of delocalized carrier density in both the pristine and doped nanotubes, we show how the n-type doping occurs when nitrogen heteroatoms are substitutionally incorporated into the honeycomb tube-shell carbon lattice.  相似文献   

12.
Adsorption and thermally-induced dissociation of disilane (Si2H6) on clean Ge(001)2 × 1 surfaces have been investigated using a combination of Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS), reflection high-energy electron diffraction (RHEED), and scanning tunneling microscopy (STM). With initial Si2H6 exposure at room temperature, the Si surface coverage increased monotonically, the EELS surface dangling bond peak intensities continuously decreased, and the intensity of half-order RHEED diffraction rods decreased. The low-coverage Si2H6 sticking probability at 300 K on Ge(001) was found to be 0.5 while the saturation coverage was 0.5 ML. A new EELS feature, GSH, involving Si-H and Ge-H bond states was observed at Si2H6 exposures φ 3.4 × 1013 cm−2. In contrast to Si2H6 -saturated Si(001), the saturated Ge(001) surface significant fraction of dimerized bonds. Adsorbed overlayers were highly disordered with the primary species on saturated surfaces being SiH2, GeH, and undissociated SiH3· Si2H6-saturated Ge(001)2 × 1 substrates were annealed for l min at temperatures Ta between 425 and 825 K. Admolecules were mobile at Ta = 545 K giving rise to significant ordering in one-dimensional chains. By Ta = 605 K, essentially all of the admolecules were captured into coarsened islands. Dangling-bond EELS peaks reappeared by 625 K and the intensities of the half-order RHEED diffraction rods increased. Ge segregation to the surface, which began at Ta 625 K, occurred rapidly at Ta 675 K. All H was desorbed by 725 K.  相似文献   

13.
Al doped ZnO (ZAO) thin films (with Al-doping levels 2 at.%) were deposited at different deposition parameters on silicon substrate by reactive magnetron sputtering for solar cell contacts, and samples were investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and spectroscopic ellipsometry (SE). Specific resistances were measured by the well known 4-pin method. Well visible columnar structure and in most cases voided other regions were observed at the grain boundaries by TEM. EELS measurements were carried out to characterize the grain boundaries, and the results show spacing voids between columnar grains at samples with high specific resistance, while no spacing voids were observed at highly conductive samples. SE measurements were evaluated by using the analytical expression suggested by Yoshikawa and Adachi [H. Yoshikawa, S. Adachi, Japanese Journal of Applied Physics 36 (1997) 6237], and the results show correlation between specific resistance and band gap energy and direct exciton strength parameter.  相似文献   

14.
Recent electrical transport measurements on metallofullerene-doped nanotube peapods are reviewed. In temperature-dependent conductance measurements, it was found that the temperature plays a crucial role in charge transfer between the nanotube and entrapped metallofullerenes and it is shown that the metallofullerenes can function as electron donors and transfer charge to the carbon nanotube host. The amount of charge transferred varies with temperature. At room temperature, the doped nanotube shows p-type conduction. As the temperature decreases, the conductance becomes n-type and even metallic behavior is observed at still lower temperatures, indicating the degenerate state caused by doping. Received: 4 November 2002 / Accepted: 7 November 2002 / Published online: 10 March 2003 RID="*" ID="*"Corresponding author. E-mail: chiu@fkf.mpg.de  相似文献   

15.
We present some EELS, SEE and K edge loss measurements on in situ cleaved graphite. Single particle excitations in the EELS measurements have been identified accordingly with some previous results on pure polycrystalline iron and are compared with available band structure calculations of graphite. The core edge loss spectroscopy performed in the reflection mode at low primary electron energy proved to be a powerful and rapid technique to study the partial density of empty states.  相似文献   

16.
We use x-ray absorption spectroscopy (XAS) and electron energy loss spectroscopy (EELS) to study the fine structure at the K edge of boron in MgB(2). We observe in XAS a peak of width 0.7 eV at the edge threshold, signaling a narrow energy region with empty boron p states near the Fermi level. The changes in the near edge structure observed in EELS with direction of the momentum transfer imply that these states have p(x)p(y) symmetry. Our observations are consistent with electronic structure calculations indicating a narrow energy window of empty p(x)p(y) states that falls to zero at 0.8 eV above the Fermi level. The disappearance of the p(x)p(y) feature in EELS at grain boundaries suggests that this signature may become powerful in probing superconductivity at nanoscale.  相似文献   

17.
The adsorption of cyclohexane on Ru(001) at 90 K has been investigated by thermal desorption mass spectrometry, EELS, UV photoemission and LEED. Thermal desorption indicates the adsorption of the undissociated molecule first in a chemisorbed monolayer (Td = 200 K) with subsequent formation of multilayers (Td = 165 K) at higher exposures. The vibrational spectrum obtained by EELS is characterized by a frequency shift of the C-H stretching mode from 2920 cm?1 (multilayer) to 2560 cm?1 for the chemisorbed monolayer. Off-specular EELS data indicate two different electron scattering mechanisms for the C-H stretching mode. Whereas for the C-H stretching mode of the multilayer, large angle electron impact scattering is observed, the C-H soft-mode of the monolayer is largely due to small angle dipolar scattering. The He I photoelectron spectra of cyclohexane multilayers are characteristic of the undissociated molecule. A new assignment of C(2s) and the lowest C(2p) level, based on a comparison with benzene, shows that the chemisorbed monolayer is characterized by the absence of emission or broadening of the 2a1u level. This is attributed to C3v symmetry of the chemisorbed layer and to a possible interaction of the 2aIu orbital with the metal surface.  相似文献   

18.
X. Yang 《Applied Surface Science》2006,252(10):3647-3657
The room-temperature adsorption and thermally induced processes of propionic acid and pyruvic acid on Ni(1 0 0) have been investigated by electron energy loss spectroscopy (EELS). Computational vibrational analysis of the optimized bidentate structures for acid-Ni model complexes (involving the organic acid and a Ni atom) has been performed by using the two-layer ONIOM method with the Density Functional Theory and used to interpret the vibrational EELS data. Dehydrogenation of the hydroxyl group is found to result in bonding of the carboxylate group in the propionate and pyruvate adspecies to either a single Ni surface atom in a bidentate configuration or two neighbouring Ni atoms in a bridge configuration. Given the similarities in the total energies and related vibrational frequencies obtained by the calculations in the case of pyruvate adspecies, it is difficult to differentiate the alternate adsorption structure, in which the keto O and hydroxyl O atoms are bonded to a Ni atom in a five-member chelate ring configuration. Furthermore, temperature-dependent EELS studies show that both the propionate and pyruvate adspecies could decompose upon annealing to above 400 K and further dissociate to CO adspecies above 550 K and to C and/or O above 600 K.  相似文献   

19.
We present new electron energy-loss spectroscopy (EELS) and Auger (AES) experiments aimed to study the structural transition of the Ge(111) surface taking place at high temperatures. Our advanced high-temperature set-up allowed us to collect accurate EELS spectra near the M2,3 excitation edges and AES MMV and MVV spectra, corresponding to different probing depths ranging from 4 to 10 Å. The metallization of the surface has been clearly detected by the shift of the M2,3 edge and of the MMV, MVV Auger energies. A detailed study of the transition has been performed using a fine temperature step under thermal equilibrium conditions. The AES and EELS experiments show that a sudden semiconductor-metal transition takes place at about 1000 K involving mainly the topmost layers. Deeper layers within 10 Å are also involved in the metallization process (in a range of 10 above 1010 K) and a smooth change in the topmost layers is also observed at higher temperatures up to 1070 K. These transitions are not fully reversible upon cooling (down to 870 K). Structural and electronic characteristics of the surface transition are discussed in light of available models.  相似文献   

20.

Novel ternary diamond-like phases of the B-C-N system were synthesized at pressures up to 30 GPa and temperatures up to 3500 K by static and dynamic compression of graphite-like BN-C solid solutions. Structure and properties of these new phases were studied using X-ray diffraction with synchrotron radiation, analytical transmission electron microscopy (ATEM), electron energy loss spectroscopy (EELS), microhardness measurements and nanoindentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号