首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 932 毫秒
1.
采用分子束外延(MBE)技术制备In_(0.5)Ga_(0.5)As/GaAs量子点,利用扫描隧道显微镜(STM)对不同衬底温度下生长的样品进行表征分析.研究表明量子点密度随温度升高先增大后减小,其尺寸随温度的升高而增大.另外,量子点以S-K模式生长并受Ostwald熟化机制影响,其尺寸增大所需的能量来自应变能和温度提供的能量,高温条件下表面原子的解吸附作用会限制量子点的生长.  相似文献   

2.
We have studied quantum dots (QDs) fabricated by activated spinodal decomposition (ASD) of an InGa(Al)As alloy deposited on top of self-organized InAs nanoscale stressors on GaAs substrate. Such a growth sequence results in a strong red shift of the PL emission down to 1.3 μm at 300 K. This red shift is caused by the formation of In-rich areas in the vicinity of the InAs islands, which increase the effective dot size. Beyond a certain critical InAs composition or nominal thickness of the InGa(Al)As layer the PL line shifts back towards higher energies. Adding Al to the alloy increases the red shift for a given In concentration. Room temperature lasing near 1.3 μm with threshold current densities of about 85 A/cm2 was achieved for lasers based on three-fold stacked ASD-formed QDs, with a maximum cw output power of 2.7 W.  相似文献   

3.
We report structural and optical properties of In0.5Ga0.5As/GaAs quantum dots (QDs) in a 100 Å-thick In0.1Ga0.9As well grown by repeated depositions of InAs/GaAs short-period superlattices with atomic force microscope, transmission electron microscope (TEM) and photoluminescence (PL) measurement. The QDs in an InGaAs well grown at 510 °C were studied as a function of n repeated deposition of 1 monolayer thick InAs and 1 monolayer thick GaAs for n=5–10. The heights, widths and densities of dots are in the range of 6–22.0 nm, 40–85 nm, and 1.6–1.1×1010/cm2, respectively, as n changes from 5 to 10 with strong alignment along [1 −1 0] direction. Flat and pan-cake-like shape of the QDs in a well is found in TEM images. The bottoms of the QDs are located lower than the center of the InGaAs well. This reveals that there was intermixing—interdiffusion—of group III materials between the InGaAs QD and the InGaAs well during growth. All reported dots show strong 300 K-PL spectrum, and 1.276 μm (FWHM: 32.3 meV) of 300 K-PL peak was obtained in case of 7 periods of the QDs in a well, which is useful for the application to optical communications.  相似文献   

4.
测量了不同组份比例x的CdS_xSe_(1-x)/ZnS(核/壳)量子点的吸收谱和发射谱,确定了量子点的吸收系数、吸收截面和发射截面.量子点吸收截面随粒径的增大而增大、随x的增大而减小.采用紫外固化胶,制备了掺杂浓度为0.1~5mg/mL的CdS_(0.4)Se_(0.6)/ZnS量子点光纤,测量了不同掺杂浓度量子点光纤中473nm泵浦功率的吸收衰减速率.吸收衰减速率和吸收截面弱关联于掺杂浓度.测量了光致荧光光谱强度随光纤长度和量子点浓度的变化.量子点光纤的光致荧光峰值强度随掺杂浓度和光纤长度变化而变化,且存在一个与最大峰值强度对应的饱和掺杂浓度和光纤长度.本文的实验结果有助于进一步构建新型的CdS_xSe_(1-x)/ZnS量子点增益型光电子器件.  相似文献   

5.
Cross-sectional Scanning Tunneling Microscopy (X-STM) is an ideal tool to study the structural properties of semiconductor nanostructures, such as InAs self-assembled quantum dots (QDs) and the properties of individual doping atoms at the atomic scale. The technique allows for a precise determination of the size, shape and composition of overgrown semiconductor nanostructures which can be part of a (complex) multilayer structure. In this paper we discuss our recent results on InAs QD structures that were capped by various methods in order to control their size and shape. We will show that the capping process does strongly affect the final QD structure and thus forms a very important step in the dot formation process. Recently people have started to investigate magnetically doped QDs. We have used our X-STM technique to study the incorporation of single Mn-impurities in InAs/GaAs QDs.  相似文献   

6.
Structural and optical properties of In0.5Ga0.5As/GaAs quantum dots (QDs) grown at 510 °C by atomic layer molecular beam epitaxy technique are studied as a function of n repeated deposition of 1-ML-thick InAs and 1-ML-thick GaAs. Cross-sectional images reveal that the QDs are formed by single large QDs rather than closely stacked InAs QDs and their shape is trapezoidal. In the image, existence of wetting layers is not clear. In 300 K-photoluminescence (PL) spectra of InGaAs QDs (n=5), 4 peaks are resolved. Origin of each peak transition is discussed. Finally, it was found that the PL linewidths of atomic layer epitaxy (ALE) QDs were weakly sensitive to cryostat temperatures (16–300 K). This is attributed to the nature of ALE QDs; higher uniformity and weaker wetting effect compared to SK QDs.  相似文献   

7.
CdTe/CdS core/shell quantum dots (QDs) have been synthesized in an aqueous phase using thioacetamide as a sulfur source. The quantum yield was greatly enhanced by the epitaxial growth of a CdS shell, which was confirmed by X-ray photoelectron spectroscopy (XPS) results. The quantum yield of as-prepared CdTe/CdS core/shell QDs without any post-preparative processing reached 58%. The experimental results illustrate that the QDs with core/shell structure show better photostability than thioglycolic acid (TGA)-capped CdTe QDs. The cyclic voltammograms reveal higher oxidation potentials for CdTe/CdS core/shell QDs than for TGA-capped CdTe QDs, which explains the superior photostability of QDs with a core/shell structure. This enhanced photostability makes these QDs with core/shell structure more suitable for bio-labeling and imaging.  相似文献   

8.
Equilibrium composition profiles (CPs) of epitaxial alloy quantum dots (QDs) are well established theoretically. However nonequilibrium CPs may occur experimentally. Using an atomistic-strain-model Monte Carlo simulation method, we demonstrate a striking correlation between the nonequilibrium CPs of QDs and the kinetic growth mode: the layer-by-layer growth (LG) and faceted growth (FG) form a core-shell structure having the triangle core of the unstrained and V-shaped core of the strained component, respectively, and both are distinctly different from the equilibrium CP. Comparing simulations with experiments, we infer that the InGaAs dots on GaAs grow by FG, while GeSi dots on Si grow first by LG followed by FG. Our findings suggest a possible method for controlling the CPs of QDs by selecting the growth mode.  相似文献   

9.
Nanocrystals (NCs) of II–VI semiconductors of few nanometers average size, called quantum dots (QDs), are now intensely investigated as radiation detectors. Besides the expected quantum confinement and influence of surface states, our electron paramagnetic resonance investigations of cZnS QDs doped with Mn2+ ions, correlated with structural data, underline that other properties should be also taken into consideration in developing the II–VI semiconductor QDs as radiation detectors. Thus, the preferential localization of Mn2+ in the core of the cubic ZnS QDs at substitutional Zn2+ cation sites next to a stacking lattice defect is expected to lead, besides changes in the impurity energy levels, to specific aggregation properties. An outer shell of different composition can also influence the structural properties of the QDs core with effects on the optical properties as well.  相似文献   

10.
To investigate the shell deposited kinetics, CdSe quantum dots (QDs) and nanorods (NRs) with a maximum length of 17 nm were fabricated via organic synthesis routes. CdSe with a hexagonal crystal structure (wurtzite) favors epitaxial growth on the {002} surfaces when well-controlled conditions were used. The morphologies and sizes of CdSe samples depended strongly on chemicals and temperature. In the case of 320 °C, CdSe NRs with adjusted length of 7–17 nm were obtained from trioctylphosphine oxide (TOPO) and tetradecylphosphonic acid (TDPA). In contrast, short CdSe NRs (less than 10 nm) were created from octadecylphosphonic acid (ODPA) and trioctylamine (TOA). Spherical CdSe QDs were further fabricated using stearic acid (SA) and TOPO at 300 °C. CdSe cores were coated with Cd0.5Zn0.5S and CdTe shells. Anisotropic growth occurred during shell deposition because CdS shells grown preferentially on the {001} facet of the CdSe core. In the case of CdSe core prepared from TOPO and TDPA, CdSe/Cd0.5Zn0.5S core/shell samples prepared from long CdSe NRs (more than 10 nm) revealed a peanut morphology while the core/shell samples created from short ones (less than 10 nm) exhibited a spherical morphology. All of the CdSe/Cd0.5Zn0.5S core/shell samples revealed a similar length to that of the CdSe cores. This phenomenon was also observed for the core/shell samples fabricated using CdSe NRs prepared by ODPA and TOA. This is ascribed to the well-developed crystal structure of CdSe NRs fabricated using an organic synthesis at high temperature. In contrast, this anisotropic growth did not occur when spherical CdSe QDs prepared from SA and TOPO and the shell (Cd0.5Zn0.5S) coating carried out using SA and TOA. To indicate the shell depositing process, CdSe NRs fabricated using TDPA and TOPO were coated with a CdTe shell. CdTe monomers were deposited on the middle and tip parts of the CdSe NRs to form a tetrapod-like morphology at 220 °C. This is ascribed to the large difference of structure of CdSe (hexagonal) and CdTe (zinc blende).  相似文献   

11.
Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ~3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.  相似文献   

12.
The dichroic ratio and orientational-order parameter of fundamental bands have been studied in the IR spectrum for a nematic liquid crystal based on alkylcyanobiphenyls and its suspensions with semiconductor CdSe/ZnS QDs with a core size of 5 nm. Analyses have been performed by the method of multiple frustrated total internal reflection. It is shown that an increase in the nanoparticle concentration from 0.5 to 1.3 wt % improves the orientation uniformity of the liquid crystal near the interface with the orienting surface. The orientational order parameter in a suspension with 1.3 wt % QDs has increased in comparison with the initial liquid crystal by more than 10% for the fundamental bands in alkylcyanobiphenyl molecules, the stretching vibrations of which correspond to the direction of their long axes.  相似文献   

13.
CdSe/ZnSe/ZnS多壳层结构量子点的制备与表征   总被引:2,自引:0,他引:2       下载免费PDF全文
展示了一种简捷的多壳层量子点合成路线。在含有过量Se源的CdSe体系中直接注入Zn源,"一步法"合成了CdSe/ZnSe量子点;进一步以CdSe/ZnSe为"核",表面外延生长ZnS壳层制备了核/壳/壳结构CdSe/ZnSe/ZnS量子点。相对于以往报道的多壳层结构量子点的制备方法,该方法通过减少壳层的生长步骤有效地简化了实验操作,缩短了实验周期,同时减少对原料的损耗。对量子点进行高温退火处理,能够大幅提高CdSe/ZnSe/ZnS量子点的发光量子产率。透射电镜、XRD以及光谱研究表明:所制备的量子点接近球形,核与壳层纳米晶均为闪锌矿结构,最终获得的CdSe/ZnSe/ZnS量子点的光致发光量子产率达到53%。为了实现量子点的表面生物功能化,通过巯基酸进行了表面配体交换修饰,使量子点表面具有水溶性的羧基功能团,并且能够维持较高的光致发光量子产率。  相似文献   

14.
脉冲激光沉积法制备钛酸锶钡薄膜及其光电性质   总被引:3,自引:0,他引:3  
用脉冲激光沉积技术制备了钛酸锶钡(Ba0.5Sr0.6TiO3薄膜.用X射线光电子能谱和原子力显微镜分别分析了薄膜的化学组分和表面形貌.在交流信号为50 mV和100 kHz时测量了薄膜的介电系数和介电损耗随外加电场的变化关系,得出最高的介电可调率达到45%.利用单光束纵向Z扫描的方法研究了薄膜的非线性光学性质,得到非线性折射率为5.04×10-6cm2/kW,非线性吸收系数为3.59×10-6m/W,测量所用光源的波长为532 nm,脉宽为55 ps,表明Ba0.5Sr0.5TiO3薄膜有较快的非线性光学响应.  相似文献   

15.
PZT基多元系压电陶瓷在三方相含量与四方相含量相等的准同型相界处(MPB)具有极为优异的压电性能。文章采用拉曼散射方法研究了0.5PZN-0.5PZT陶瓷体系中三方-四方相共存与弥散相变现象。研究发现,与纯PZT相比,0.5PZN-0.5PZT体系拉曼谱呈明显宽化特征,表明体系弛豫性较强,依据介温谱计算出弥散因子γ高达1.71。通过对拉曼谱峰进行Gauss函数拟合,定量计算三方相R1模式与四方相E(3TO)和A1(3TO)模式相对强度,以及四方相E(4LO)和A1(3LO)模式与三方相Rh模式相对强度,结果表明0.5PZN-0.5PZT体系三方相与四方相含量相等,组成位于准同型相界,该结果得到XRD相分析验证。电学测量表明0.5PZN-0.5PZT陶瓷压电性能优异:kp=0.66, d33=425 pC/N,适宜作为压电致动器材料使用。  相似文献   

16.
The photoluminescence(PL) characteristics of ZnCuInS quantum dots(QDs) with varying ZnS shell thicknesses of 0, 0.5, and 1.5 layers are investigated systemically by time-correlated single-photon counting measurements and temperature-dependent PL measurements. The results show that a ZnS shell thickness of 1.5 layers can effectively improve the PL quantum yield in one order of magnitude by depressing the surface trapping states of the core ZnCuInS QDs at room temperature. However, the PL measurements at the elevated temperature reveal that the core-shell nanocrystals remain temperature-sensitive with respect to their relatively thin shells.The temperature sensitivity of these small-sized single-layered core-shell nanocrystals may find applications as effective thermometers for the in vivo detection of biological reactions within cells.  相似文献   

17.
Temperature-dependent photoluminescence (PL) spectroscopy of CuInS2 core and CuInS2/ZnS core–shell quantum dots (QDs) was studied for understanding the influence of a ZnS shell on the PL mechanism. The PL quantum yield and lifetime of CuInS2 core QDs were significantly enhanced after the QD surface was coated with the ZnS shell. The temperature dependences of the PL energy, linewidth, and intensity for the core and core–shell QDs were studied in the temperature range from 92 to 287 K. The temperature-dependent shifts of 98 meV and 35 meV for the PL energies of the QDs were much larger than those of the excitons in their bulk semiconductors. It was surprisingly found that the core and core–shell QDs exhibited a similar temperature dependence of the PL intensity. The PL in the CuInS2/ZnS core–shell QDs was suggested to originate from recombination of many kinds of defect-related emission centers in the interior of the cores.  相似文献   

18.
Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process.  相似文献   

19.
The photostability is an outstanding feature of quantum dots (QDs) used as fluorescence probes in biological staining and cell imaging. To find out the related factors in the QD photostability, the photobleaching of naked CdTe QDs and BSA coated CdSe/CdS/ZnS QDs in human hepatocellular carcinoma (QGY) cells and human nasopharynx carcinoma (KB) cells were studied under single photon excitation (SPE) and two-photon excitation (TPE). In these two cell lines the cellular QDs were irradiated by a 405 nm continuous wave laser for SPE or an 800 nm femto-second (fs) laser for TPE. The QD photobleaching with the irradiation time was found to fit a biexponential decay. The fast decay plays a dominant role in the bleaching course and thus can be used as the parameter to quantitatively evaluate the QD photostability. The TPE decreased the QD photobleaching as compared to SPE. The BSA coated core/shell QDs had improved the photostability up to 4-5 times than the naked QDs due to the shielding effect of the QD shell. Therefore, it is better to use core/shell structured QDs as the fluorescence probe combining with a TPE manner for those long-term monitoring studies.  相似文献   

20.
We demonstrate a gradual surface modification process of relaxed Si0.5Ge0.5 alloy films by 100 MeV Au beam with fluence varying between 5 × 1010 and 1 × 1012 ions/cm2 at 80 K by means of atomic force microscopy (AFM). Presence of Ge quantum dots (QDs) was found in the virgin sample. The disappearance of the QDs were noticed when the samples were irradiated with a fluence of 5 × 1010 ions/cm2. Craters were found developing at a fluence of 1 × 1011 ions/cm2. Apart from the evolution of the craters, blisters were also detected at a fluence of 1 × 1012 ions/cm2. Variation of the average root mean square value of the surface roughness as a function of fluence was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号