首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under the generalized gradient approximation (GGA), the structural and electronic properties are studied for H-terminated silicene nanoribbons (SiNRs) with either zigzag edge (ZSiNRs) or armchair edge (ASiNRs) by using the first-principles projector-augmented wave potential within the density function theory (DFT) framework. The results show that the length of the Si-H bond is always 1.50 Å, but the edge Si-Si bonds are shorter than the inner ones with identical orientation, implying a contraction relaxation of edge Si atoms. An edge state appears at the Fermi level EF in broader ZSiNRs, but does not appear in all ASiNRs due to their dimer Si-Si bond at edge. With increasing width of ASiNRs, the direct band gaps exhibit not only an oscillation behavior, but also a periodic feature of Δ3n > Δ3n+1 > Δ3n+2 for a certain integer n. The charge density contours analysis shows that the Si-H bond is an ionic bond due to a relative larger electronegativity of H atom. However, all kinds of the Si-Si bonds display a typical covalent bonding feature, although their strength depends on not only the bond orientation but also the bond position. That is, the larger deviation of the Si-Si bond orientation from the nanoribbon axis as well as the closer of the Si-Si bond to the nanoribbon edge, the stronger strength of the Si-Si bond. Besides the contraction of the nanoribbon is mainly in its width direction especially near edge, the addition contribution from the terminated H atoms may be the other reason.  相似文献   

2.
Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov–Bohm effect and atomic power transmission lines in single nanoribbon.  相似文献   

3.
4.
Linear and nonlinear vibrations of a graphene nanoribbon with free armchair edges subjected to tensile deformation have been studied by atomistic simulation methods. It has been shown that the phonon modes are split into two subsets. Atoms in some (XY) modes vibrate in the nanoribbon plane and in other (Z) modes vibrate along the normal to this plane. The possibility of the excitation of a gap discrete breather in an extended nanoribbon in the spectrum of the Z modes, the frequency of which lies in the gap of the spectrum of the XY modes, has been demonstrated. This breather is a large-amplitude vibrational mode in the XY plane localized on the four atoms on the nanoribbon edge. The breather is unstable with respect to small perturbations in the form of displacements of atoms out of the nanoribbon plane. Nevertheless, the discrete breather decays slowly owing to its weak interaction with the Z modes, so that its lifetime can be on the order of 103 vibrational periods.  相似文献   

5.
We study the Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction in doped armchair graphene nanoribbon. The effects of both external magnetic field and electron-Holstein phonon on RKKY interaction have been addressed. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic field along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain both transverse and longitudinal static spin susceptibilities of armchair graphene nanoribbon in the presence of electron-phonon coupling and magnetic field. The spin susceptibility components are calculated using the spin dependent Green’s function approach for Holstein model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show the influences of magnetic field on the spatial behavior of in-plane and longitudinal RKKY interactions are different in the presence of magnetic field.  相似文献   

6.
The electronic and structural properties of zigzag aluminum nitride (AlN), gallium nitride (GaN) nanoribbons and AlxGa1−xN nanoribbon heterojunctions are investigated using the first-principles calculations. Both AlN and GaN ribbons are found to be semiconductor with an indirect band gap, which decreases monotonically with the increased ribbon width, and approaching to the gaps of their infinite two dimensional graphitic-like monolayer structures, respectively. Furthermore, the band gap of AlxGa1−xN nanoribbon heterojunctions is closely related to Al (and/or Ga) concentrations. The AlxGa1−xN nanoribbon of width n=8 shows a continuously band gap varying from about 2.2 eV-3.1 eV as x increases from 0 to 1. The large ranged tunable band gaps in such a quasi one dimension structure may open up new opportunities for these AlN/GaN based materials in future optoelectronic devices.  相似文献   

7.
The analytical formulae for anomalous hollow beam propagating in uniaxial crystals orthogonal to the optical axis are derived. The numerical results show that the anomalous hollow beam spreads at different rates in the directions along and orthogonal to the optical axis. The beam spreads more rapidly in the direction along the optical axis than orthogonal to the optical axis in positive crystal (ne/no>1), and the beam spreads more rapidly in the direction orthogonal to the optical axis than along the optical axis in negative crystal (ne/no<1).  相似文献   

8.
Control of the band gap of graphene nanoribbons is an important problem for the fabrication of effective radiation detectors and transducers operating in different frequency ranges. The periodic edge-modified zigzag-shaped graphene nanoribbon (GNR) provides two additional parameters for controlling the band gap of these structures, i.e., two GNR arms. The dependence of the band gap E g on these parameters is investigated using the π-electron tight-binding method. For the considered nanoribbons, oscillations of the band gap E g as a function of the nanoribbon width are observed not only in the case of armchair-edge graphene nanoribbons (as for conventional graphene nanoribbons) but also for zigzag GNR edges. It is shown that the change in the band gap E g due to the variation in the length of one GNR arm is several times smaller than that due to the variation in the nanoribbon width, which provides the possibility for a smooth tuning of the band gap in the energy spectrum of the considered graphene nanoribbons.  相似文献   

9.
BaVS3 has an hexagonal structure (space group P63/mmc), with chains of V4+ running along the C direction and largely separated from each other. Small single crystals of BaVS3 prepared by flux method in BaCl2 show evidence of 1D antiferromagnetic ordering below 70 K as previously observed on powder samples. The sulphur deficient compound gives ferromagnetic ordering below 16 K with an easy axis of magnetization along the C direction. BaVxTi(1?x)S3 powder samples with 0 <x <1 of the same crystal symmetry as BaVS3 have also been prepared and the effects of changing the population of d electrons along the V-Ti chains, from 0 electron per site, (BaTiS3) to 1 electron per site, (BaVS3) have been studied by X-ray, magnetic and resistivity measurements. A band model is suggested to explain these data.  相似文献   

10.
The pursuit for a high-performance thermoelectric n-type bismuth telluride-based material is significant because n-type materials are inferior to their corresponding p-type materials in highly efficient thermoelectric modules. Herein, to improve the thermoelectric performance of an n-type Bi2Te3, we prepared Bi2Te3 nano-plates with a homogeneous sub-micron size distribution and thickness range of about a few tens of nanometers. This was achieved using a typical nano-chemical synthetic method, and the prepared materials were then spark plasma sintered to fabricate n-type nano-bulk Bi2Te3 samples. We observed a significant enhancement of the anisotropic electrical transport properties for the nano-bulk sample with a higher power factor along the in-plane direction (24.3?μW?cm?1?K?2 at 300?K) than that along the out-of-plane direction (8.1?μW?cm?1?K?2 at 300?K). However, thermal transport properties were insensitive along the measured direction for the nano-bulk sample. We used a dimensionless figure of merit ZT to calculate the thermoelectric performance. The results showed that the maximum ZT value of 0.69 was achieved along the in-plane direction at 440?K for the nano-bulk n-type Bi2Te3 sample, which was however smaller than that of the previously reported n-type samples (ZT of 1.1). We believe that a further enhancement of the ZT value in the fabricated nano-bulk sample could be accomplished by effectively removing the surface organic ligand of the Bi2Te3 nano-plate particles and optimizing the spark plasma sintering conditions, maintaining the nano-plate morphology intact.  相似文献   

11.
We present the photoemission results of two layered tetragonal compounds, the anti-ferromagnet UAsSe and ferromagnet USb2. We observed intriguing electronic structure for both UAsSe and USb2, in which relatively dispersive and narrow 5f bands are present. In the vicinity of the Fermi edge we found a very sharp photoemission peak with dispersion of several meV along the Γ to Z direction of the Brillouin zone. We also found a broader, hybridized f-character band with dispersion of several hundred meV along the Γ to X direction. Narrow and dispersive bands in these U-based magnetic materials are reminiscent of band magnetism as previously found in some transition metals.  相似文献   

12.
The transmission of p-polarized plane wave through Ag/SiO2 multilayer films perforated with periodic subwavelength air slits is investigated by using the finite-difference time-domain (FDTD) method. The results show that the optical transmission property is mediated by the interference among the propagating coupled-SPP modes along the lateral direction inside the SiO2 layers and the conditions of Fabry-Pérot-like resonance along the longitudinal direction together. When some geometric parameters are suitably initialized, the high transmission peaks can split into more peaks as the functional layer (metal/dielectric/metal sandwich stack) number increases, and the wavelength of the same-order transmission peak exhibits a red shift as the grating period increases.  相似文献   

13.
Magnetic and neutron diffraction measurements were carried out in order to study the spontaneous and induced spin-reorientation (SR) transition of the “easy axis–easy plane” type in the poly and single-crystalline samples of the hexagonal Tm2Fe17. We have determined the temperature dependence of the lattice parameters and the angle between the c-axis and the magnetic moment of the Tm-subsystem. We also find that the SR transition is accompanied by a large (about 20%) magnetization change of the Tm subsystem. In order to induce such a SR transition with the external magnetic field, μ0Hcr=5 T is necessary to be applied along the hard-magnetization direction (the a-axis) at 4.2 K. The Hcr value decreases with an increasing temperature. The magnetization measurements demonstrate that at 10 K the saturation magnetization along the easy-magnetization direction (the c-axis) is smaller than that along the hard-magnetization direction. Based on this observation, we believe that Fe-subsystem of Tm2Fe17 is likely to have magnetization anisotropy.  相似文献   

14.
We report an investigation at the endpoint region of the spin density wave state in (TMTSF)2PF6 where metal and superconductivity emerge. Thanks to resistivity measurements along the three main crystallographic directions, we are able to follow the texture in this phase coexistence regime. In this respect, superconductivity is used as a decoration technique of the metallic pattern. We show that metal (superconductivity) emerges first along the c? direction in a counterintuitive manner. Then metal (superconductivity) domains evolves from filaments along the c? axis towards slabs perpendicular to the a-axis which melt together in the homogeneous phase at high pressure. This evolution is compatible with the proposition of the formation of a soliton phase in the vicinity of the critical pressure of the (TMTSF)2PF6 phase diagram.  相似文献   

15.
The quasi two-dimensional single crystal [NH3-(CH2)5-NH3]CuCl4 has been studied by EPR measurements at X-band, room temperature andT = 100 K in three perpendicular planes (a, b), (a, c), (b, c*). This compound crystallizes in the monoclinic system with four entities per unit cell. Only one EPR exchange-collapsed line was observed for the four magnetically inequivalent copper ions in the lattice at room temperature. A careful analysis of experimental data permits us to obtain the principal values of theg-factor:g =2.052 andg =2.267. The EPR linewidth exhibits a minimum along the г п ≈/4 direction of (a, c*) plane attributable to spin diffusion. Along the г п ≈/4 direction of (b, c*) plane the linewidth exhibits a maximum attributable to the two magnetically inequivalent sub-systems located in two adjacent mineral sheets. The simulations of EPR spectra obtained along the bisector of (b, c*) angle at room temperature and atT = 100 K show that exchange interaction between these two dissimilar sub-systems is nearly equal to zero.  相似文献   

16.
The orientation dependences of the second-order quadrupole shifts of the central component in the 23Na NMR spectrum were studied in the temperature range 293–760 K. The profile of the spectral distribution is calculated using various models of the Na1/2Bi1/2TiO3 structure. The calculations agree with the experimental data for the monoclinic structure of a polar cluster with two Na displacement components: a displacement along the [111] p direction and a small displacement statistically or dynamically disordered over six equally probable [100] p -type directions. Tetragonal-phase nuclei and monoclinic clusters with a very small displacement component along the [111] p direction are found to coexist and have close energies over the temperature range 580–610 K. The results obtained provide new information concerning the character of the diffuse phase transition at 610 K.  相似文献   

17.
We report the specific heat of single crystals of the spin ice compound Dy2Ti2O7 under magnetic fields down to 1.8 K. Our polycrystalline results down to 0.4 K are fully consistent with the previous report by Ramirez et al. For the magnetic field along the [100] direction, Cspin/T is interpreted as one Schottky peak characterized by the Zeemann splitting of the Ising levels of all four equivalent spins for each tetrahedron. However, for the magnetic field along the [111] direction, Cspin/T is interpreted as two-component Schottky peak reflecting the fact that there are two kinds of spin components. Along the [110] direction, it is also interpreted as two-component Schottky peak because of experimental misalignment. We found that the features of the polycrystalline data in magnetic fields cannot be reconstructed by simply taking appropriate averages of the present anisotropic single-crystalline data.  相似文献   

18.
Magnetic measurements have been performed on a single crystal of DyNi2 in applied fields up to 135 kOe. In the ferromagnetic range (Tc = 25 K), the easy magnetization direction is [100] and the hardest one is [111]. Crystal field parameters have been determined from the field and temperature dependence of the magnetization measured along the three principal axes. A two-dimensional model has been used to take into account the rotation of magnetization towards the field. The deduced parameters are W = -0.8 K and x = 0.49. The corresponding anisotropy is very large: especially even a field of 135 kOe applied along a difficult magnetization axis cannot rotate the magnetization along this direction.  相似文献   

19.
Based on density functional theory and non-equilibrium Green's function, we investigate the edge hydrogenation and oxidation effects on the spin transport of devices consisting of a zigzag C2N nanoribbon (ZC2NNR) embedded in zigzag graphene nanoribbons in parallel (P) and antiparallel (AP) spin configurations. The results show that device with edge hydrogenation exhibits dual spin filtering effect in AP spin configuration and obvious negative differential resistance in both P and AP spin configuration. By substituting oxygen for hydrogen as passivation atoms of ZC2NNR, the spin filtering efficiency is as high as 100% in the P spin configuration, and the negative differential resistance is largely enhanced with a peak to valley ratio in excess of 4×103. Our theoretical studies suggest that zigzag C2N nanoribbon modulated by edge substitution has great potential in the design of future multifunctional spin devices.  相似文献   

20.
Bulk magnetization measurements have been performed on single crystals of HoTiO3 and ErTiO3. The easy direction of magnetization is along the b-axis for HoTiO3 and along the c-axis for ErTiO3 with respect to the Pbnm chemical cell. These findings are in qualitative agreement with the results of two independent powder neutron diffraction studies. The saturation magnetic moments at 4.2 K along the easy axes are 7.3(2)μB per formula unit for HoTiO3 and 6.9(2)μB for ErTiO3. In addition, single crystal susceptibility data were analyzed using the theory of Boutron to yield values for the Heisenberg exchange coupling and the second-order crystal field terms B02 and B22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号