首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
The temperature dependence of the FMR and EPR linewidth of bulk nickel single crystals was measured from 260 to 410°C at 9.85 GHz. A linewidth falling off rapidly with increasing temperature was found in a region above Tc: 365<T<385°C. An interpretation by the critical behaviour of the spin system is discussed.  相似文献   

2.
The temperature dependence of the EPR spectrum for the α-phase of iron tungstate has been investigated in the temperature range of 40–260 K. At temperatures betweenT 1 ≈ 250 K andT 2 ≈ 205 K where the antiferromagnetic phase transition occurs, a relatively narrow EPR line arising from the dominant iron(III) species has emerged, gaining intensity with the temperature increase. Its linewidth temperature evolution could be described by Huber equation, with TN = 200 K, which is consistent with the peak seen in magnetic susceptibility measurements, while the correspondingg-factor shifts to higher fields reflecting the build-up of internal field emerging from increasing shortrange order in the spin system. At temperatures lower than T2, a very broad and distorted EPR line with temperature dependentg-factor and linewidth has been observed reflecting the corresponding rise of the magnetic susceptibility below the antiferromagnetic phase transition, presumably arising from magnetic clusters embedded in the antiferromagnetic background.  相似文献   

3.
The temperature evolution of the DF-ODMR spectra of triplet excitons in the A-TCNB crystal has been studied in the vicinity of its order-disorder phase transition at Tc=204 K. Linewidth measurements were carried out for two selected orientations of the magnetic field in which the two crystal sites of the ordered phase appear as magnetically inequivalent and equivalent, respectively. In the former case the linebroadening observed near Tc was attributed to changes in the long-range order parameter and to the short-range clustering formation along the slacks. In the second case the sharp increase in the linewidth near Tc was interpreted and briefly discussed in terms of the critical slowing down of the fluctuations in the order parameter associated with the phase transition.  相似文献   

4.
The EPR of Fe3+ ions has been used for the first time to evidence a low-spin (S=0) to high-spin (S=2) transition of Fe2+ ions in an octahedral ferrous complex [Fe(trz)(Htrz)2](BF4). The temperature dependence of the intensity of the Fe3+ EPR line atg=4.3 reveals a spin transition which occurs for the Fe2+ ions, with hysteresis. The transition temperatures areT c↑=374 K in the warming mode andT c↓=345 K in the cooling mode. The analysis of the EPR spectral data indicates the presence of a structural phase transition accompanying the spin transition.  相似文献   

5.
Measurements of electron spin resonance (ESR) of La2/3Ca1/3MnO3 (LCMO) in the ferromagnetic and paramagnetic phases were carried out. Phase transition and temperature dependence of the peak-to-peak ESR linewidth were determined. The transition temperature between ferromagnetic and paramagnetic phases was observed at 265 K. A prominent increase of the peak-to-peak linewidth with decreasing temperature below Tc was observed. Using the dynamic scale theory and block spin transformation in critical phenomenon, the quantitative calculation of peak-to-peak linewidth at near Tc was made, which was in good agreement with the experimental data. It was believed that the long interactions between the ferromagnetic microregions for LCMO played a key role in determining the ESR linewidth.  相似文献   

6.
The temperature dependence of the EPR spectrum of Cu2+ in the range 293–393 K exhibits a low-spin (S=0) to high-spin (S=2) transition of the Fe2+ ions, with hysteresis (T c↑=363 K,T c↓=343 K). At 103 K, the principal values of theg and hyperfine tensors of Cu2+ ions are revealed by hyperfine structure.  相似文献   

7.
X-band single-crystal electron paramagnetic resonance (EPR) studies are done on VO2+ ions doped in potassium hexaaquazinc (II) sulfate, K2[Zn (H2O)6] (SO4)2 (PHZS) at room temperature. The spin Hamiltonian parameters, i.e., g and A tensors and their direction cosines, are evaluated by the standard diagonalization procedure using angular variation of the EPR spectra in three planes (ab, bc* and c*a), with the help of a computer program. The EPR spectrum is simulated using the EasySpin program to verify the calculations. The detailed EPR analysis indicates the presence of two magnetically inequivalent VO2+ sites. Both the vanadyl complexes are found to take up the substitutional position in the host lattice. The optical absorption spectrum of VO2+ ions doped in PHZS single crystal at room temperature is also recorded and four main dd transfer bands in the visible region are assigned. The theoretical band positions are obtained using energy expressions and a good agreement is found with the experimental values. With the help of assigned bands the crystal-field parameters (Dq, Ds and Dt) are evaluated. Finally, with the optical and EPR data, the nature of bonding in the complex is discussed.  相似文献   

8.
With original modulation technique, the longitudinal electron spin-relaxation timeT 1 has been measured in the La1-xCaxMnO3 manganite (x = 0.1) both in the paramagnetic state and around the temperature (T c) of the ferromagnetic ordering. The data are compared with the evolution of the transverse relaxation time T2 as determined from the electron spin resonance (ESR) linewidth. Well above Tc, theT 1 =T 2 equality was confirmed, whereas a steep slowing down ofT 2 was observed asT c was approached (theT 1/T2 ratio increased by two orders of magnitude). The temperature dependence ofT 1 within the whole temperature range was found to be consistent with that ofT · χ(T), where χ(T) is the electron-spin susceptibility obtained from the ESR absorption area. The interpretation suggests that both the longitudinal and transverse electron-spin relaxation rates are governed by strong exchange interaction between the Mn ions, the ESR linewidth being inhomogeneously broadened in the vicinity of the phase transition.  相似文献   

9.
Magnetic and electron paramagnetic resonance (EPR) properties of EuFe3(BO3)4 single crystals have been studied over the temperature range of 300–4.2 K and in a magnetic field up to 5 T. The temperature, field and orientation dependences of susceptibility, magnetization and EPR spectra are presented. An antiferromagnetic ordering of the Fe subsystem occurs at about 37 K. The easy direction of magnetization perpendicular to the c axis is determined by magnetic measurements. Below 10 K, we observe an increase of susceptibility connected with the polarization of the Eu sublattice by an effective exchange field of the ordered Fe magnetic subsystem. In a magnetic field perpendicular to the c axis, we have observed an increase of magnetization at T < 10 K in the applied magnetic field, which can be attributed to the appearance of the magnetic moment induced by the magnetic field applied in the basal plane. According to EPR measurements, the distance between the maximum and minimum of derivative of absorption line of the Lorentz type is equal to 319 Gs. The anisotropy of g-factor and linewidth is due to the influence of crystalline field of trigonal symmetry. The peculiarities of temperature dependence of both intensity and linewidth are caused by the influence of excited states of europium ion (Eu3+). It is supposed that the difference between the g-factors from EPR and the magnetic measurements is caused by exchange interaction between rare earth and Fe subsystems via anomalous Zeeman effect.  相似文献   

10.
We have studied [N(C2H5)4]2MnCl4 crystal by X-band CW EPR spectra in the temperature range 170-300 K. The angular dependences of linewidth ΔH were measured and described in the light of a double-layer system (2D) with exchange interactions. Two temperature anomalies of linewidth ΔH were found at T1=225 K and T2=192 K on cooling. Different behaviors of ΔH anomalies recorded for an external magnetic field parallel and perpendicular to the ab crystallographic plane indicate ordering/disordering of MnCl4 groups in this plane and their displacement along the c-axis which occurs in the temperature of about 225 K.  相似文献   

11.
The magnetic resonance spectrum of spin clusters formed in spin-Peierls magnets in the vicinity of impurity ions is investigated. The observed temperature dependences of the effective g-factor and the linewidth of the electron paramagnetic resonance (EPR) in crystals of Cu1?x NixGeO3 are described in the model of the exchange narrowing of the two-component spectrum with one component ascribed to spin clusters and exhibiting an anomalous value of the g-factor and the other related to triplet excitations. An estimation of the size of the suppressed dimerization region around the impurity ion is obtained (this region includes about 30 copper ions). The dependence of the effective g-factor and the EPR linewidth on the impurity concentration at low temperatures indicates the interaction of clusters.  相似文献   

12.
Vanadium-doped forsterite crystal has been studied with X-band electron paramagnetic resonance (EPR) spectroscopy. The sample was grown by the Czochralski technique in an argon atmosphere with 2 vol% of hydrogen. The EPR spectrum of the sample at T = 15 K is predominantly represented by the V4+ ion signals that possess a characteristic eight-line hyperfine structure and are observed close to g = 2. The observation of the two magnetically nonequivalent centers in the angular dependence in the (ab) crystal plane and one center in the (ac) and (bc) planes, combined with the published optical spectroscopy data, unambiguously show that the V4+ ions are located at the silicon lattice site. Principal values of the hyperfine A and g-tensor and magnetic axes orientations of the V4+ centers have been determined. The orientation disorder of the V4+ centers has been found around the crystalline c axis but not in the (ab) crystal plane. The angular variation of the hyperfine component linewidth is described best with a disorder range of ±3.0°.  相似文献   

13.
The EPR linewidths in [(CH3)2CHNH3]2CuCl4 have been measured at 78 K. The salt contains two types of structurally and magnetically inequivalent chains. Each chain can be visuallized as a narrow ribbon cut from the two dimensional (RNH3)2CuCl4 structures. The EPR g values are consistent with the structural characteristics of each chain. The linewidths are influenced by anisotropic and antisymmetric exchange, and also exhibit low dimensional spin diffusion behavior. The symmetry axis of the diffusional behavior is normal to the plane of the ribbon, implying that the spin correlations in the ribbons are two dimensional in nature.  相似文献   

14.
Angle-selection experiments of a spin soliton in randomly oriented ladder polydiacetylene were carried out by pulsed electron paramagnetic resonance (EPR) at W-band. EPR measurement using 94 GHz microwaves increased the difference in the resonance field due tog anisotropy of the spin soliton to allow the orientation dependence of transient nutation, electron nuclear double resonance (ENDOR) and spin relaxations to be investigated. The shape of theg anisotropy-resolved nutation spectrum was discussed on the basis of the EPR transition moments and the differences between spin relaxation times. Reliable assignments of hyperfine couplings to the β protons (Hβ) of the alkyl side chains were achieved with the support of W-band ENDOR measurements. No significant orientational dependence in theT 1 andT 2 processes was found in terms of isotropy of the Hβ-hyperfine interaction.  相似文献   

15.
The temperature dependence of the elastic constants of CsCN exhibiting the CsCl structure was measured with ultrasonic and neutron techniques. The room temperature values were found to bec 11=18.8,c 12=10.7 andc 44=2.95 1010 dyn/cm2. The sound waves inT 2g andE g symmetries exhibit anomalous temperature effects which are similar but definitively weaker than those in the NaCl type cyanides. In addition we measured the acoustic phonon dispersion along [100] and [110]. These results are compared with recent molecular dynamics calculations.  相似文献   

16.
Electron paramagnetic resonance (EPR) spectra of nonmetallic amorphous polyphthalocyanines are investigated in the temperature range 295–500 K. The EPR spectrum of nonmetallic amorphous polyphth-alocyanine samples at room temperature prior to heating is a narrow singlet of approximately Lorentzian shape with a linewidth ΔHpp ≈ 1.7 Oe, a splitting factor g=2.00, and an intensity IEPR ≈ 1017 spins/g. It is found that the intensity and linewidth of the EPR spectrum increase with increasing temperature. Beginning with a characteristic temperature T1, both parameters, ΔHpp and IEPR, become dependent on time (under isothermal conditions). Computer calculations of the spectra demonstrate that the EPR spectrum can be represented as a superposition of two lines with substantially differing parameters whose dependences on the temperature and micro-wave power also differ significantly. The possible reasons for the existence of electron paramagnetic resonance centers of two types with different degrees of delocalization of a charge carrier with a magnetic moment in nonmetallic amorphous polyphthalocyanines are discussed.  相似文献   

17.
《Current Applied Physics》2020,20(5):673-679
1H nuclear magnetic resonance (NMR) measurements have been performed to study the proton dynamics associated with the antiferroelectric transition of a hydrogen-bonded single crystal of CsH3(SeO3)2. Herein, 1H NMR spectrum, shift, linewidth, and spin-lattice relaxation rate 1/T1 are measured in the temperature range of 80–296 K with the c-axis parallel to a magnetic field of ~4.85 T. The spectrum exhibits a composite structure with two narrow peaks at 296 K; at a low temperature, this structure evolves into a single broad shape with three humps. This complex shape and evolution are deconvoluted into five or six components based on the number of inequivalent and disordered hydrogen sites. By estimating the chemical shift and linewidth for each proton site, we identify all peaks. The spin-lattice relaxation recovery exhibits a double-exponential behavior with two relaxation times, short T1S and extremely large T1L. Both T1S and T1L follow Arrhenius behavior. From the respective 1/T1(T), the activation energies for proton motion are measured to be small: 1.16 ± 0.1 and 0.83 ± 0.06 kJ/mol for T1S and T1L, respectively. While the static NMR data, chemical shift and linewidth, show no evidence for the transition, the dynamic data 1/T1L highlights a clear increase across TN = 145 K, which is possibly a signature of the transition.  相似文献   

18.
We report the electron paramagnetic resonance (EPR) studies of MgTi2O4 in the 300–140 K range. Above the transition temperature T t (~258 K), the EPR results indicate that MgTi2O4 is paramagnetic. The parameters of the EPR spectra show an anomalous change at T t. The clear EPR lines can be observed in temperature between T t and 220 K. Besides that the EPR intensity, g value, and EPR linewidth increase with decreasing temperature; in temperature range below 220 K, no clear EPR line can be detected. The EPR spectra results demonstrate that magnetic spin-singlet state and the orbital density wave of MgTi2O4 system are formed gradually with decreasing temperature at low temperature range.  相似文献   

19.
Electron paramagnetic resonance (EPR) and optical absorption spectral investigations have been carried out on Fe3+ ions doped sodium borophosphate glasses (NaH2PO4-B2O3-Fe2O3). The EPR spectra exhibit resonance signals with effective g values at g=2.02, g=4.2 and g=6.4. The resonance signal at g=4.2 is due to isolated Fe3+ ions in site with rhombic symmetry whereas the g=2.02 resonance is due to Fe3+ ions coupled by exchange interaction in a distorted octahedral environment. The EPR spectra at different temperatures (123-295 K) have also been studied. The intensity of the resonance signals decreases with increase in temperature whereas linewidth is found to be independent of temperature. The paramagnetic susceptibility (χ) was calculated from the EPR data at various temperatures and the Curie constant (C) and paramagnetic Curie temperature (θp) have been evaluated from the 1/χ versus T graph. The optical absorption spectrum exhibits bands characteristic of Fe3+ ions in octahedral symmetry. The crystal field parameter (Dq) and the Racah interelectronic repulsion parameters (B and C) have also been evaluated and discussed.  相似文献   

20.
The EPR study of the Cu2+-doped tris-sarcosine calcium chloride (TSCC) at room temperature is reported. Two magnetically inequivalent sites for Cu2+ were observed. The rhombic spin Hamiltonian parameters are determined by fitting the EPR spectra for two centres: Cu2+(I) g1 = 2.0276, g2 = 2.0517, g3 = 2.4019, A1 = 82, A2 = 128, A3 = 152 [G] and Cu2+(II) g1 = 2.0231, g2 = 2.0368, g3 = 2.5294, A1 = 76, A2 = 92, A3 = 156 [G]. The ground state wave function is also determined. The g-anisotropy is evaluated and compared with the experimental value. Further, the optical study of the crystal at room temperature is carried out and the nature of bonding in the complex is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号