首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
给出一种求解双曲型守恒律的五阶半离散中心迎风格式.对一维问题,该格式以五阶中心WENO重构为基础;对二维问题,用逐维计算的方法将五阶中心WENO重构进行推广.时间方向的离散采用Runge-Kutta方法.格式保持了中心差分格式简单的优点,即不用求解Riemann问题,避免进行特征分解.用该格式对一维和二维Euler方程进行数值试验,结果表明该格式是高精度、高分辨率的.  相似文献   

2.
于恒  水鸿寿  张慧生 《计算物理》2001,18(3):271-275
从几何观点解释了双曲型方程差分格式的TVD条件,导出了常用二阶差分格式的无振荡条件,发展了一种具有时空三阶精度的无振荡选取NOS差分格式.从单个双曲型方程的一些典型算例,显示了该格式高精度、无振荡和逻辑简单的特点,并能有效避免通常使用维数分裂法向二维推广时带来的空间耗散不对称性.  相似文献   

3.
符尚武等对二维三温能量方程提出了一种9点差分格式,它适用于任意三维网格。但他们用非线性块Gauss—Seidel方法求解所得的非线性代数方程组,收敛得非常慢且经常不得不因为迭代某些次数后仍不收敛而缩小时间步长。  相似文献   

4.
两类差分格式在锋生数值模拟中的应用比较   总被引:2,自引:0,他引:2  
季仲贞  杨宏伟  王斌 《计算物理》2003,20(4):311-314
在二维理想锋生数值模式的基础上,用两类差分格式进行数值试验比较.计算结果表明,无论是在大气数值模拟中广泛使用的总能量守恒型差分格式,还是在高速流中捕捉接触间断较好的反扩散格式,对锋生过程均有较好的模拟能力,反扩散格式的效果更好一些.  相似文献   

5.
张守慧  梁栋 《计算物理》2018,35(4):413-428
给出求解二维抛物型方程的Strang型的交替分段区域分裂格式。交替分段思想可以将区域分为一些不重叠的子区域,Strang型算子分裂技巧通过将高维问题的求解分解为几个低维问题的求解来降低其求解的复杂度。方法是无条件稳定的,理论分析了截断误差。数值算例说明格式的有效性及时空的二阶精度.  相似文献   

6.
给出求解二维抛物型方程的Strang型的交替分段区域分裂格式。交替分段思想可以将区域分为一些不重叠的子区域,Strang型算子分裂技巧通过将高维问题的求解分解为几个低维问题的求解来降低其求解的复杂度。方法是无条件稳定的,理论分析了截断误差。数值算例说明格式的有效性及时空的二阶精度.  相似文献   

7.
文章考察了相邻双侧边盖驱动方腔流动(即上壁面向右运动和左侧壁面向下运动)的三维线性整体稳定性.首先,采用Taylor-Hood有限元方法并经由Newton迭代过程计算得到双侧边盖驱动方腔流动的二维稳态基本流.其次,Taylor-Hood有限元在Chebyshev Gauss配置点上进行离散,同时Gauss配置点也可以用于线性稳定性方程的高阶有限差分格式离散.然后,离散得到的矩阵形式的广义特征值问题可以结合shift-and-invert算法采用隐式重启Arnoldi方法计算.最后,通过对线性稳定性方程特征值的计算,发现了一个最不稳定的驻定模态和两对对称行波模态.最不稳定的三维驻定模态的临界Reynolds数为Rec=261.5,远远小于二维不稳定的临界Reynolds数Rec2d=1 061.7.通过画出这3类三维不稳定模态的流向扰动速度和扰动涡量的空间等值面图像,可以发现不稳定扰动位于稳态基本流的两个主涡区域,因此可以认为主涡区域是三维扰动失稳的主要能量来源地.   相似文献   

8.
赵海洋  刘伟  杨小亮  任兵 《计算物理》2007,24(6):660-666
为高精度捕捉激波等流场结构,引入一种Power限制器,对NND格式和WNND格式进行改进,分别得到二阶PNND(Power NND)格式和三阶PWNND(Power WNND)格式.该Power类型格式通过Power限制器对相邻待选模板上的一阶导数进行限制,改善了NND格式和WNND格式在间断附近的耗散效应.对各种格式的分析表明,在间断附近采用Power限制器的格式比原格式的表现要好,耗散小且捕捉间断精度高,其中PNND格式虽然只有二阶精度,但在所有算例中与三阶WNND格式的计算结果比较接近,在个别算例中甚至优于WNND格式.最后将PWNND格式应用到二维NACA0012翼型的强迫俯仰振动的数值模拟,计算结果与实验值、参考计算值吻合较好.  相似文献   

9.
根据两介质五方程简化模型的基本假设,发展了适用于任意多种介质的体积分数方程。为了捕捉多介质界面,将HLLC-HLLCM混合型数值通量的计算格式推广应用于二维平面和柱几何的多介质复杂流动问题,在高阶精度的数据重构过程中采用斜率修正型人工压缩方法ACM。通过一维、二维多介质黎曼问题算例测试,结果表明:发展的计算格式能够较好地分辨接触间断和激波,间断附近物理量无振荡;对于添加了初始扰动的激波问题,能够有效抑制激波数值不稳定性;使用二维柱球SOD问题和接触间断型黎曼问题检验计算格式对多介质复杂流动问题的适应性。  相似文献   

10.
X分形晶格上Gauss模型的临界性质   总被引:3,自引:0,他引:3       下载免费PDF全文
李英  孔祥木  黄家寅 《物理学报》2002,51(6):1346-1349
采用实空间重整化群变换的方法,研究了2维和d(d>2)维X分形晶格上Gauss模型的临界性质.结果表明:这种晶格与其他分形晶格一样,在临界点处,其最近邻相互作用参量也可以表示为K=bqiqi(qi是格点i的配位数,bqi是格点i上自旋取值的Gauss分布常数)的形式;其关联长度临界指数v与空间维数d(或分形维数df)有关.这与Ising模型的结果存在很大的差异. 关键词: X分形晶格 重整化群 Gauss模型 临界性质  相似文献   

11.
We study numerically the Riemann problem for a 2 x 2 system of conservation laws with a cubic flux function, a particular case of the class of models introduced by Keyfitz and Kranzer. The system is not strictly hyperbolic, and the classical Lax theory for hyperbolic systems is not directly applicable. Correspondingly, some numerical schemes which are accurate for strictly hyperbolic systems are not well behaved for this example. When they do work, different schemes yield markedly different results for certain data. We explain this effect by observing that, near these data, viscous regularization is non-uniform as the viscosity tends to zero. This fact does not contradict the well-posedness of the hyperbolic model; it does imply that precise control of the viscosity introduced into a computational method is crucial for generating the correct numerical solutions. We examine all of these issues and comment on their implications for similar systems which arise in continuum mechanics.  相似文献   

12.
This paper concerns the initial boundary value problems for some systems of quasilinear hyperbolic conservation laws in the space of bounded measurable functions. The main assumption is that the system under study admits a convex entropy extension. It is proved that then any twicely differentiable entropy fluxes have traces on the boundary if the bounded solutions are generated by either Godunov schemes or by suitable viscous approximations. Furthermore, in the case that the weak interior solutions are generated by Godunov schemes, any Lipschitz continuous entropy fluxes corresponding to convex entropies have traces on the boundary and the traces are bounded above by computable numerical boundary values. This in particular gives a trace formula for the flux functions in terms of the numerical boundary data. We also investigate the formulation of boundary conditions for systems of hyperbolic conservation laws. It is shown that the set of expected boundary values derived from the viscous approximation contains the one derived in terms of the boundary Riemann problems, and the converse is not true in general. The general theory is then applied to some specific examples. First, several new facts are obtained for convex scalar conservation laws. For example, we give example which show that Godunov schemes produce numerical boundary layers. It is shown that any continuous functions of density have traces on the boundary (instead of only entropy fluxes). We also obtain interior and boundary regularity of the weak solutions for bounded measurable initial and boundary data. A generalized Oleinik entropy condition is also obtained. Next, we prove the existence of a weak solution to the initial-boundary value problem for a family of × quadratic system with a uniformly characteristic boundary condition. Received: 23 July 1996 / Accepted: 28 October 1996  相似文献   

13.
The generic structure of solutions of initial value problems of hyperbolic-elliptic systems, also called mixed systems, of conservation laws is not yet fully understood. One reason for the absence of a core well-posedness theory for these equations is the sensitivity of their solutions to the structure of a parabolic regularization when attempting to single out an admissible solution by the vanishing viscosity approach. There is, however, theoretical and numerical evidence for the appearance of solutions that exhibit persistent oscillations, so-called oscillatory waves, which are (in general, measure-valued) solutions that emerge from Riemann data or slightly perturbed constant data chosen from the interior of the elliptic region. To capture these solutions, usually a fine computational grid is required. In this work, a version of the multiresolution method applied to a WENO scheme for systems of conservation laws is proposed as a simulation tool for the efficient computation of solutions of oscillatory wave type. The hyperbolic-elliptic $2 \times 2$ systems of conservation laws considered are a prototype system for three-phase flow in porous media and a system modeling the separation of a heavy-buoyant bidisperse suspension. In the latter case, varying one scalar parameter produces elliptic regions of different shapes and numbers of points of tangency with the borders of the phase space, giving rise to different kinds of oscillation waves.  相似文献   

14.
The goal of this work is to extend finite volume WENO and central WENO schemes to the hyperbolic balance laws with geometrical source term and spatially variable flux function. In particular, we apply proposed schemes to the shallow water and the open-channel flow equations where the source term depends on the channel geometry. For obtaining stable numerical schemes that are free of spurious oscillations, it becomes crucial to use the decomposed source term evaluation, which maintains the balancing between the flux gradient and the source term. In addition, the open-channel flow equations contain spatially variable flux function. The appropriate definitions of the terms that arise in the source term decomposition, in combination with the Roe approximate Riemann solver that includes the spatial derivative of the flux function, lead to the finite volume WENO scheme that satisfies the exact conservation property – the property of preserving the quiescent flow exactly. When the central WENO schemes are applied, additional reformulations are introduced for the transition from the staggered values to the nonstaggered ones and vice versa by using the WENO reconstruction procedure. The proposed central WENO schemes also preserve the quiescent flow, but only in prismatic channels. In various test problems the obtained balanced schemes show improvements in comparison with the standard versions of the proposed type schemes, as well as with some other first- and second-order numerical schemes.  相似文献   

15.
JIN Cui-Lian 《理论物理通讯》2008,50(11):1027-1032
In this paper, we investigate a class of mixed initial-boundary value problems for a kind of n × n quasilinear hyperbolic systems of conservation laws on the quarter plan. We show that the structure of the pieeewise C^1 solution u = u(t, x) of the problem, which can be regarded as a perturbation of the corresponding Riemann problem, is globally similar to that of the solution u = U(x/t) of the corresponding Riemann problem. The piecewise C^1 solution u = u(t, x) to this kind of problems is globally structure-stable if and only if it contains only non-degenerate shocks and contact discontinuities, but no rarefaction waves and other weak discontinuities.  相似文献   

16.
The development of a compact fourth-order finite volume method for solutions of the Navier–Stokes equations on staggered grids is presented. A special attention is given to the conservation laws on momentum control volumes. A higher-order divergence-free interpolation for convective velocities is developed which ensures a perfect conservation of mass and momentum on momentum control volumes. Three forms of the nonlinear correction for staggered grids are proposed and studied. The accuracy of each approximation is assessed comparatively in Fourier space. The importance of higher-order approximations of pressure is discussed and numerically demonstrated. Fourth-order accuracy of the complete scheme is illustrated by the doubly-periodic shear layer and the instability of plane-channel flow. The efficiency of the scheme is demonstrated by a grid dependency study of turbulent channel flows by means of direct numerical simulations. The proposed scheme is highly accurate and efficient. At the same level of accuracy, the fourth-order scheme can be ten times faster than the second-order counterpart. This gain in efficiency can be spent on a higher resolution for more accurate solutions at a lower cost.  相似文献   

17.
Eulerian shock-capturing schemes have advantages for modelling problems involving complex non-linear wave structures and large deformations in solid media. Various numerical methods now exist for solving hyperbolic conservation laws that have yet to be applied to non-linear elastic theory. In this paper one such class of solver is examined based upon characteristic tracing in conjunction with high-order monotonicity preserving weighted essentially non-oscillatory (MPWENO) reconstruction. Furthermore, a new iterative method for finding exact solutions of the Riemann problem in non-linear elasticity is presented. Access to exact solutions enables an assessment of the performance of the numerical techniques with focus on the resolution of the seven wave structure. The governing model represents a special case of a more general theory describing additional physics such as material plasticity. The numerical scheme therefore provides a firm basis for extension to simulate more complex physical phenomena. Comparison of exact and numerical solutions of one-dimensional initial values problems involving three-dimensional deformations is presented.  相似文献   

18.
A new high-order finite volume method based on local reconstruction is presented in this paper. The method, so-called the multi-moment constrained finite volume (MCV) method, uses the point values defined within single cell at equally spaced points as the model variables (or unknowns). The time evolution equations used to update the unknowns are derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the cell-averaged value and the point-wise value of the state variable and its derivatives. The finite volume constraint on the cell-average guarantees the numerical conservativeness of the method. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as general Riemann problems. A multi-moment constrained Lagrange interpolation reconstruction for the demanded order of accuracy is constructed over single cell and converts the evolution equations of the moments to those of the unknowns. The presented method provides a general framework to construct efficient schemes of high orders. The basic formulations for hyperbolic conservation laws in 1- and 2D structured grids are detailed with the numerical results of widely used benchmark tests.  相似文献   

19.
We determine the bifurcation from the constant solution of nonclassical transitional and overcompressive viscous shock profiles, in regions of strict hyperbolicity. Whereas classical shock waves in systems of conservation laws involve a single characteristic field, nonclassical waves involve two fields in an essential way. This feature is reflected in the viscous profile differential equation, which undergoes codimension-three bifurcation of the kind studied by Dumortier et al., as opposed to the codimension-one bifurcation occurring in the classical case. We carry out a complete bifurcation analysis for systems of two quadratic conservation laws with constant, strictly parabolic viscosity matrices by reducing to a canonical form introduced by Fiddelaers. We show that all such systems, except possibly those on a codimension-one variety in parameter space, give rise to nonclassical shock waves, and we classify the number and types of their bifurcation points. One consequence of our analysis is that weak transitional waves arise in pairs, with profiles forming a 2-cycle configuration previously shown to lead to nonuniqueness of Riemann solutions and to nontrivial asymptotic dynamics of the conservation laws. Another consequence is that appearance of weak nonclassical waves is necessarily associated with change of stability in constant solutions of the parabolic system of conservation laws, rather than with change of type in the associated hyperbolic system.  相似文献   

20.
研究可压缩多介质流场的激波和多介质界面相互作用问题.在Descartes固定网格采用level-set方法追踪界面,气/气界面边界条件处理采用OGFM方法,采用修正的rGFM方法提高气/水和气/固界面处构造Riemann问题精度,将Riemann近似解得到的界面参数外推到两侧真实和虚拟流体,采用五阶WENO方法求解流场Euler方程和界面level-set方程,给出不同时刻流场数值纹影图像.结果表明:在可压缩流场嵌入固体和水、气体等目标,本文方法可较精确地分辨平面运动激波和单列水柱及包含气/气、气/水和气/固等界面作用后产生的复杂激波结构.和传统的分区与贴体变换方法不同,为Descartes网格包含多介质界面复杂流场计算提供新途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号