首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
本文通过密度泛函方法计算6H-SiC(0001)表面对氧分子和水分子的吸附. 在6H-SiC(0001)表面上吸附的O2分子自发地解离成O*,并被吸收在C与Si原子之间的空位上. 吸附的H2O自发地分解成OH*和H*,它们都被吸附在Si原子的顶部,OH*进一步可逆地转化为O*和H*. H*可以使Si悬键饱和并改变O*的吸附类型,并进一步稳定6H-SiC(0001)表面并防止其转变为SiO2.  相似文献   

2.
研究了Pt(111)电极在0.1 mol/L HClO4溶液中O2吸附与OHad脱附及氧还原反应的动力学.研究发现OHad的可逆吸脱附速率很快;在氧还原的动力学或动力学与传质混合控制区,恒电位下氧还原的电流随反应时间缓慢衰减,在转速较大,扫速较慢的情形下正向扫描过程中氧还原的电流总是明显低于逆向扫描的电流;Pt/0.1 mol/L HClO4从无O2切换到O2相似文献   

3.
采用激光溅射法制备了同位素标记的氧化锰团簇正离子Mnm18On+,并研究了其在快速流动反应管中与硫化氢在热碰撞条件下的反应,氧化锰团簇正离子与硫化氢反应前后的质量分布与强度变化由飞行时间质谱仪检测.实验表明,绝大多数氧化锰团簇正离子可与硫化氢发生氧-硫交换反应产生水分子,反应通式为:Mnm18On++H2S→Mnm18On-1S++H218O.通过密度泛函理论计算了氧化锰团簇正离Mn2O2+、Mn2O3+和Mn2O4+与H2S反应的机理,结果显示,在这些反应体系中氧-硫交换反应通道同时具有热力学和动力学优势,印证了实验中观察到的现象.气相团簇研究发现的氧-硫交换反应与相关凝聚相体系反应结果一致  相似文献   

4.
本文利用阻抗谱研究Ir(111)电极在HClO4和H2SO4中溶液中的氢吸附行为. 在HClO4溶液中,随着施加电位从0.2 V降到0.1 V(vs RHE),Ir(111)电极上氢吸附速率从1.74×10-8 mol·cm-2·s-1增大到 3.47×10-7 mol·cm-2·s-1 . 与相同条件下Pt(111)电极上的氢吸附速率相比,Ir(111)上的氢吸附速率要小1∽2个数量级,这是由于Ir(111)电极与H2O结合能力更强,因此位于水合氢键网络中的氢离子需要克服更高的能垒才能重新定向进而发生欠电位沉积. 在H2SO4溶液中,氢吸附电位负移了200 mV,吸附速率也下降了一个数量级,这是由于Ir(111)电极表面强吸附的硫酸根/硫酸氢根物种的阻碍作用. 结果表明,在电化学环境下,位于电极表面附近的水分子的取代和重新定向在很大程度上影响了氢吸附过程.  相似文献   

5.
本文通过离子迁移质谱法研究了氧化钠团簇阳离子(NanOm+,n≤11)的稳定结构. 质谱结果表明化学计量组成Na(Na2O)(n-1)/2+ (n=3、5、7、9和11)系列是稳定的,并且NaO(Na2O)(n-1)/2+ (n=5、7、9和11)系列作为二级稳定系列. 为了获得这些团簇离子的结构,通过离子迁移率测量实验测定离子和氦缓冲气体之间的碰撞截面. 同时计算了这些组合物优化结构的理论碰撞截面. 结果表明,Na(Na2O)(n-1)/2+和NaO(Na2O)(n-1)/2+的结构除了n=9之外,其它具有相似结构框架. Na(Na2O)(n-1)/2+所有的化合键位于钠和氧之间. 另一方面,NaO(Na2O)(n-1)/2+中除了Na-O键之外,还存在一个O-O氧键,表明NaO(Na2O)(n-1)/2+具有过氧化物离子(O22-)作为Na(Na2O)(n-1)/2+的氧化物离子(O2-) 的替代物. Na(Na2O)(n-1)/2+和NaO(Na2O)(n-1)/2+两种稳定系列都是闭壳组合物. 这些闭壳特征对氧化钠簇阳离子的稳定性具有强烈影响.  相似文献   

6.
本文利用脉冲激光溅射-超声分子束载带离子源在气相中产生了HC2nO+ (n=3-6)正离子. 通过对贴附CO的络合物离子的红外光解离光谱实验获得了HC2nO+正离子在1600∽3500 cm-1范围内的红外光谱. 通过比较实验光谱和理论模拟光谱确定了HC2nO+正离子具有端接氢和氧的直线型碳链衍生物结构,基态为三重态,单重态比三重基态能量高10∽15 kcal/mol. 成键分析表明HC2nO+中的碳链具有连烯的结构特征.  相似文献   

7.
本文利用266 nm波长的激光及程序升温脱附的方法研究了甲醇在ZnO(0001)表面的光催化反应. TPD结果显示部分的CH3OH以分子的形式吸附在ZnO(0001)表面,而另外一部分在表面发生了解离. 实验过程中探测到H2,CH3·,H2O,CO,CH2O,CO2和CH3OH这些热反应产物. 紫外激光照射实验结果表明光照可以促进CH3OH/CH3O·解离形成CH2O,在程序升温或光照的过程中它又可以转变为HCOO-. CH2OHZn与OHad反应在Zn位点上形成H2O分子. 升温或光照都能促进CH3O·转变为CH3·. 该研究对CH3OH在ZnO(0001)表面的光催化反应机理提供了一个新的见解.  相似文献   

8.
本文介绍了真空紫外光电离质谱结合理论计算研究环戊酮单分子的光电离解离过程. 在9.0∽15.5 eV能量范围内,测量了环戊酮离子及其碎片离子的光电离效率曲线. 通过光电离效率曲线,将环戊酮分子的电离能确定为9.23±0.03 eV,并确认碎片离子为:C5H7O+,C4H5O+,C4H8+,C3H3O+,C4H6+,C2H4O+,C3H6+,C3H5+,C3H4+,C3H3+,C2H5+, C2H4+. 利用量子化学计算方法,在ωB97X-D/6-31+G(d,p)理论水平基础上,提出了C5H8O+的解离机制. 通过对环戊酮解离路径的分析,发现开环和氢迁移过程为环戊酮离子解离的主要路径.  相似文献   

9.
本文利用红外光解离光谱研究了第三族金属氧化物离子对二氧化碳分子的转化机制. 研究表明,对于[ScO(CO2)n]+体系,在n≤4时,形成了溶剂化结构;在n=5时,形成了碳酸盐结构,实现了二氧化碳的转化. 对于[YO(CO2)n]+体系,需要4个二氧化碳分子就可以实现二氧化碳的转化. 而在[YO(CO2)n]+体系中,只发现了溶剂化结构,没有观察到碳酸盐结构. 理论计算表明,[YO(CO2)n]+体系拥有最小的溶剂化结构向碳酸盐结构转化能垒,[LaO(CO2)n]+体系拥有最大的溶剂化结构向碳酸盐结构转化能垒. 本文从分子水平揭示了不同金属氧化物离子对二氧化碳分子转化的影响规律.  相似文献   

10.
利用同步辐射真空紫外光电离质谱和理论计算研究了胸腺嘧啶的光解离反应路径, 通过改变光子能量得到不同的质谱信号, 光子能量在12.0 eV时主要的碎片有m/z=98 (C4H6N24O+)、97 (C4H5N2O+)、84 (C3H4N2O+或C<  相似文献   

11.
ABSTRACT

Density functional theory calculations were used to investigate the potential application of an AlN nanocluster in the detection of H2S, COS, CS2 and SO2 gases. In overall, the order of strength of interaction of these gases with the nanocluster is as follows: SO2 (Ead?=??17.6?kcal/mol)?>?H2S (Ead?=??14.0?kcal/mol)?>?COS (Ead?=??8.4?kcal/mol)?>?CS2 (Ead?=??4.5?kcal/mol). This indicates that by increasing the electric dipole moment, the adsorption energy becomes more negative. We found that the Al12N12 nanocluster may be a promising work function-type sensor for SO2 gas among the studied gases. Also, it is an electronic sensor for both SO2 and CS2 gases but selectively acts between them because of their different effects on the electrical conductivity. It is neither work function-type nor electronic sensor for H2S and COS gases. The AlN nanocluster benefits from a short recovery time about 7.7?s and 18.0?ms for desorption of SO2 and CS2 gases from its surface at room temperature, respectively. It is also concluded that this cluster can work at a humid environment.  相似文献   

12.
In this study, a symmetric electrochemical capacitor was fabricated by adopting a lithium iron phosphate (LiFePO4)-activated carbon (AC) composite as the core electrode material in 1.0 M Na2SO3 and 1.0 M Li2SO4 aqueous electrolyte solutions. The composite electrodes were prepared via a facile mechanical mixing process. The structural properties of the nanocomposite electrodes were characterised by scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) analysis. The electrochemical performances of the prepared composite electrode were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that a maximum specific capacitance of 112.41 F/g was obtained a 40 wt% LiFePO4 loading on an AC electrode compared with that of a pure AC electrode (76.24 F/g) in 1 M Na2SO3. The improvement in the capacitive performance of the 40 wt% LiFePO4–AC composite electrode is believed to be attributed to the contribution of the synergistic effect of the electric double layer capacitance (EDLC) of the AC electrode and pseudocapacitance via the intercalation/extraction of H+, OH, Na+ and SO32− and Li+ ions in LiFePO4 lattices. In contrast, it appears that the incorporation of LiFePO4 into AC electrodes does not increase the charge storage capability when Li2SO4 is used as the electrolyte. This behaviour can be explained by the fact that the electrolyte system containing SO42− only exhibits EDLC in the Fe-based electrodes. Additionally, Li+ ions that have lower conductivity and mobility may lead to poorer charge storage capability compared to Na+ ions. Overall, the results reveal that the AC composite electrodes with 40 wt% LiFePO4 loading on a Na2SO3 neutral electrolyte exhibit high cycling stability and reversibility and thus display great potential for electrochemical capacitor applications.  相似文献   

13.
Spectroscopic properties of Er3+:CBS (CdSO4+B2O3 and R2SO4+CdSO4+B2O3, R2SO4=Li2SO4.H2O, Na2SO4, K2SO4 and Gd2(SO4)3.8H2O) glasses are reported. The assigned energy level data of Er3+(4f 11) in these glasses are analysed in terms of a parametrized model Hamiltonian. The standard deviations of the data fits are between 39 and 47 cm−1 so that the energy level schemes of the Er3+(4f 11) ions in borosulphate (CBS) glasses are reasonably well reproduced. Radiative properties for the fluorescent levels of Er3+:CBS glasses are determined by using the Judd-Ofelt theory. The potential laser transitions are identified with the help of predicted radiative properties which are compared and discussed with similar results.  相似文献   

14.
The ion exchange kinetics of polycrystalline Na/K β/β″-Al2O3 soaked in H2SO4 were studied. The rate of ion exchange in hot concentrated H2SO4 was determined by monitoring the change of solution alkali content. The H3O+ diffusion coefficient was estimated from the resulting time dependence data and the ceramic conductivity calculated. Dilute H2SO4 with a constant applied voltage was also studied and the ceramic conductivity calculated from the change of current with time. The estimated conductivities obtained by the two methods are compared with reported values for H3O+-β- and β″-Al2O3 single crystals. Utilising an H3O+ jump model, the estimated values reflect intragranular conduction.  相似文献   

15.
Absolute cross sections of electron capture and dissociative excitation for the Na+-H2, N2 and K+-H2, N2 pairs are determined. The high intense hydrogen and nitrogen atomic lines HI (121.6 nm) NI (120.0 nm), have been observed. For the Na+-H2 and K+-H2 pairs the qualitative interpretation of experimental results in the framework of quasidiatomic approximation are carried out. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The potential energy surfaces of the Ca+-H2 complex are calculated using the internally contracted multireference CI method (ICMR CI) and complete active space SCF (CAS SCF) reference wave functions. The calculations involve both the ground and the excited states correlating to (3d)2D and (4p)2P Ca+ terms and are carried out for C∞v and C2v configurations. Anisotropy of the potential surfaces has also been analysed by computing the interaction energy for some representative points as a function of the angle between the H2 molecular axis and the Ca+—centre of mass of H2 bond axis. The calculations have revealed the existence of a conical intersection of the lowest excited (3d)2B2 potential surface with the ground state one. The obtained global energy minimum of the (3d)2B2 potential surface lying 0.683 eV below the asymptote indicates a possible stabilization of the Ca+-H2 complex towards formation of an exciplex in the (3d)Ca+-H2(v = 0) collision process. The dependence of the vibrational energy levels of H2 on the distance from Ca+ in the C2v configuration has also been studied.  相似文献   

17.
We perform DFT calculations to investigate the redox and formate mechanisms of water–gas-shift (WGS) reaction on Au/CeO2 catalysts. In the redox mechanism, we analyze all the key elementary steps and find that the OH cleavage is the key step. Three possible pathways of OH cleavage are calculated: (1) OHad+*→Had+Oad; (2) Had+OHad→H2(g)+Oad+*; and (3) OHad+OHad→2Oad+H2(g) (*′: the free adsorption sites on the oxides; ad′: adsorption on the metal; ad″: adsorption on the oxide, respectively). In the formate mechanism, we identify all the possible pathways for the formation and decomposition of surface formates in the WGS reaction. It is found that there is a shortcoming in the redox and formate mechanisms which is related to surface oxygen reproduction. Four possible pathways for producing surface oxygen are studied, and all the barriers of the four pathways are more than 1 eV. Our results suggest that the processes to reproduce surface oxygen in the reaction circle are not kinetically easy.  相似文献   

18.
A systematic investigation of the Ag2SO4-Na2SO4 binary system which forms a complete solid solution in the entire compositional range reveals the mobility of Ag+ as well as Na+. This is concluded on the basis of the appearance of two overlapping semicircles in the complex impedance plane. Transport number measurements using Tubandt and dc polarisation methods support the mobility of both ions. Further, the maximum conductivity for 30 Ag2SO4-70 Na2SO4 is due to optimum percolating paths resulting from lattice expansion. The decrease in conductivity beyond this, is caused by the increased interaction of Ag+ and Na+.  相似文献   

19.
The effect of H2O on Na+ diffusivity in polycrystalline, and single crystal, beta-alumina was investigated. We found no evidence that water affects the diffusion kinetics and conclude that H2O is not as easily introduced as a blocking impurity into either the grain boundaries or fast conducting planes, nor is Na+ easily removed from the structure by leaching.  相似文献   

20.
The binding energy of a hydrogen molecule on metal atoms (Li, Be, Na, and Mg) attached to aromatic hydrocarbon molecules (benzene and anthracene) was calculated using an ab initio molecular orbital method at the MP2(FC)/cc-pVTZ level with basis set superposition error (BSSE) correction. The energy tended to become more negative as the metal atom had a more positive charge and a smaller radius. The energies of Li2C6H6-H2, Li2C14H10-H2, Na2C14H10-H2, and MgC14H10-H2 were −2.7 to −2.2, −4.0 to −3.1, −2.8 to −0.3, and −1.3 kcal/mol, respectively. Most of these energies were more negative than those on the hydrocarbons without metal atoms (ca. −1 kcal/mol). Analyzing the Lennard–Jones type potential with the parameters determined by the MP2 calculations, it was found that these energies mainly consisted of the induction force caused by the positive charge of the metal atom and the dispersion force from the nearest C6-ring. The energy of BeC14H10-H2 was more negative (−8.6 kcal/mol) than of the other complexes. The hydrogen molecule in this complex had a comparatively longer H–H distance and a more positive H2 charge than the others. These data suggest that the hydrogen adsorption on this complex involves a charge transfer process in addition to physisorption interactions. The hydrogen binding energies in some Li2C14H10-H2 systems (∼−4.0 kcal/mol) and BeC14H10-H2 are promising to operate hydrogen storage/release at ambient temperature with moderate pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号