首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
有机半导体的物理掺杂理论   总被引:1,自引:0,他引:1       下载免费PDF全文
基于最低未被占据分子轨道(LUMO)和最高被占据分子轨道(HOMO)的高斯态密度分布与载流子在允许量子态中的费米-狄拉克(Fermi-Dirac)分布,提出有机半导体中物理掺杂的理论模型;研究了掺杂浓度、温度和禁带宽度对载流子浓度的影响,并与一些报道的实验结果做了比较.研究发现无论是否掺杂,温度升高时,有机半导体中的载流子浓度都会增大,并且随温度倒数的线性减小而指数增大;对于本征有机半导体,载流子浓度随禁带宽度的增大而指数下降,随高斯分布宽度的平方指数增加;对杂质和主体不同能级关系的掺杂情形下掺杂浓度对载 关键词: 有机半导体 掺杂 高斯态密度 载流子浓度  相似文献   

2.
Based on the assumption of Gaussian energy distributions of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), analytical expressions of generalized Einstein relation in chemically doped organic semiconductor are developed, by approximation of Coulomb traps with a rectangle potential well. Numerical calculations show that traditional Einstein relations do not hold for chemically doped organic semiconductors. Similar to physical doping, the dependence of diffusion coefficient to mobility D/μ ratio on the carrier concentration has a maximum. An essential difference between chemical doping and physical doping is that, the D/μ ratio in chemically doped organic semiconductors depends not only on carrier concentration and doping concentration, but also on the applied electric field. PACS 71.20.Rv; 72.90.+y; 73.50.-h  相似文献   

3.
A unified physical model for thermopower was presented in organic semiconductors, based on the Marcus theory and variable-range hopping theory. According to the proposed model, the characteristic of charge carrier thermoelectric transport in organic semiconductors has been investigated. In particular, polaron effects, energetic disorder, and carrier density dependence of the thermopower have been discussed in detailed. The calculation also shows a good agreement with the experimental data in organic semiconductors.  相似文献   

4.
黄平  游理  梁星  张继业  骆军 《物理学报》2019,68(7):77201-077201
层状氧硫族化合物由于其本征的低晶格热导率和可观的热电性能吸引了广泛关注,其中以BiCuSeO化合物的热电性能最为优异.但是,其同晶型化合物BiCuTeO,由于带隙较小且存在大量本征Cu空位,导致载流子浓度较高,热电性能较差,从而研究较少.针对BiCuTeO存在的上述问题,本文利用Se替代部分Te,以期能够展宽带隙并减少Cu空位,提高其热电性能.采用固相反应结合快速热压烧结制备了BiCuTe_(1-x)Se_xO(x=0, 0.1, 0.2, 0.3和0.4)块体热电材料,并系统地研究了该体系的电热输运性能.研究结果表明,利用Se替代Te,可以使BiCuTeO导电层化学键强度增加、带隙增大、载流子有效质量增加以及载流子散射增强,从而导致载流子浓度和迁移率同时降低,进而电导率随着Se含量增加而剧烈降低, Seebeck系数则显著增大.由于综合电输运性能恶化,功率因子随着Se含量增加而减小,导致热电优值zT随着Se含量增加而降低.最终,Se含量为x=0.1的样品,在室温和723 K时的zT值分别达到约0.3和0.7,仍然在较宽温区内保持较高的zT值.由于Se替代Te改变了BiCuTeO的能带结构,通过载流子浓度优化,有望进一步提高其热电性能.  相似文献   

5.
Different from electrons and holes in traditional inorganic semiconductors, the charge carriers in polymer semiconductors are spin polarons and spinless bipolarons. In this paper, a theoretical model is presented to describe the spin-polarized injection of electrical currents from a ferromagnetic contact into a nonmagnetic polymer semiconductor. In this model, a new relation of conductivity to concentration polarization for polymer semiconductors is introduced based on a three-channel model to describe the spin-polarized injection of electrical currents under large electrical current densities. The calculated results of the model reveal the effects of the polaron ratio, the carrier concentration polarization, the interfacial conductance, the bulk conductivity of materials, and the electrical current density, etc. on the spin polarization of electrical currents. As conclusions, the large and matched bulk conductivity of materials, the small spin-dependent interfacial conductance, the thin polymer thickness and the large enough electrical current are critical factors for upgrading the spin polarization of electrical currents in polymer semiconductors. Particularly, when the polaron ratio in polymer semiconductors approaches the concentration polarization of the ferromagnetic contact, a modest concentration polarization is sufficient for achieving a nearly complete spin-polarized injection of electrical currents.  相似文献   

6.
张奇  孙恒达  朱美芳 《中国物理 B》2022,31(2):28506-028506
Organic thermoelectric(OTE)materials have been regarded as a potential candidate to harvest waste heat from complex,low temperature surfaces of objects and convert it into electricity.Recently,n-type conjugated polymers as organic thermoelectric materials have aroused intensive research in order to improve their performance to match up with their ptype counterpart.In this review,we discuss aspects that affect the performance of n-type OTEs,and further focus on the effect of planarity of backbone on the doping efficiency and eventually the TE performance.We then summarize strategies such as implementing rigid n-type polymer backbone or modifying conventional polymer building blocks for more planar conformation.In the outlook part,we conclude forementioned devotions and point out new possibility that may promote the future development of this field.  相似文献   

7.
本文利用紫外吸收光谱和稳态荧光光谱技术结合理论模型,研究了钙钛矿材料CH3NH3PbI3晶体在光激发过程中的电荷复合动力学行为,进而获得晶体的扩散长度. 电荷载体的扩散长度是判断光电材料的重要参数. 研究通过合成两种不同缺陷态浓度的CH3NH3PbI3晶体,测量这两种晶体在0.019∽4.268 μJ/cm2的激光激发下的时间分辨荧光光谱,利用动力学模型对光谱进行拟合,可以获得每个晶体的掺杂浓度,空穴浓度以及电荷复合参数. 将这些参数结合已有公式,最终可获得每个晶体的电荷载体的扩散长度.  相似文献   

8.
We have studied the thermoelectric properties of porous silicon, a nanostructured, yet single-crystalline form of silicon. Using electrochemical etching, liquid-phase doping, and high-temperature passivation, we show that porous Si can be fabricated such that it has thermoelectric properties superior to bulk Si, for both n- and p-type doping. Hall measurements reveal that the charge carrier mobility is reduced compared to the bulk material which presently limits the increase in thermoelectric efficiency.  相似文献   

9.
采用金属有机物化学气相沉积技术生长了不同掺杂浓度的GaN薄膜, 并且通过霍尔效应测试和塞贝克效应测试, 表征了室温下GaN薄膜的载流子浓度、迁移率和塞贝克系数. 在实验测试的基础上, 计算了GaN薄膜的热电功率因子, 并且结合理论热导率确定了室温条件下GaN薄膜的热电优值(ZT). 研究结果表明: GaN薄膜的迁移率随着载流子浓度的增加而减小, 电导率随着载流子浓度的增加而增加; GaN 薄膜材料的塞贝克系数随载流子浓度的增加而降低, 其数量级在100–500 μV/K范围内; GaN薄膜材料在载流子浓度为1.60×1018 cm-3时, 热电功率因子出现极大值4.72×10-4 W/mK2; 由于Si杂质浓度的增加, 增强了GaN薄膜中的声子散射, 使得GaN薄膜的热导率随着载流子浓度的增加而降低. GaN薄膜的载流子浓度为1.60×1018 cm-3时, 室温ZT达到极大值0.0025.  相似文献   

10.
The thermoelectric power of a material, typically governed by its band structure and carrier density, can be varied by chemical doping that is often restricted by solubility of the dopant. Materials showing large thermoelectric power are useful for many industrial applications, such as the heat-to-electricity conversion and the thermoelectric cooling device. Here we show a full electric-field tuning of thermoelectric power in a dual-gated bilayer graphene device resulting from the opening of a band gap by applying a perpendicular electric field on bilayer graphene. We uncover a large enhancement in thermoelectric power at a low temperature, which may open up a new possibility in low temperature thermoelectric application using graphene-based device.  相似文献   

11.
Laser technology for submicron-doped layers formation in semiconductors   总被引:5,自引:0,他引:5  
A p–n junctions formed by means of laser stimulated diffusion of dopants into semiconductors (Si, GaAs, GaP, InP) were investigated. SIMS and AES spectroscopy methods were used to measure the depth profiles of the incorporated impurities: B into Si, Zn into GaAs, GaP and InP. The volt-capacity method using an electrochemical profilometer was used for the charge carrier concentration distribution in the doped layer. Spectroscopy investigations have shown that during solid phase diffusion locally doped regions almost exactly reproduce the shape and size of the windows in the dielectrics. The lateral diffusion of the dopant is about 0.01μm. The concentration profiles of charge carrier distribution in the doped layers clearly show the specific processes of dopant diffusion and evaporation at laser solid-phase doping of semiconductors. The comparative analysis of parameters of formed semiconductor structures shows that the procedure of laser solid-phase doping can stand the comparison with technology of implantation and conventional diffusion technology. Since the laser solid-phase doping ensures also a high degree of reproducibility of p–n junction parameters, it can be effectively used for electronic devices fabrication.  相似文献   

12.
Zhiyuan Liu 《中国物理 B》2022,31(10):107303-107303
The binary CoSb3 skutterudite thermoelectric material has high thermal conductivity due to the covalent bond between Co and Sb, and the thermoelectric figure of merit, ZT, is very low. The thermal conductivity of CoSb3 materials can be significantly reduced through phonon engineering, such as low-dimensional structure, the introduction of nano second phases, nanointerfaces or nanopores, which greatly improves their ZT values. The phonon engineering can optimize significantly the thermal transport properties of CoSb3-based materials. However, the improvement of the electronic transport properties is not obvious, or even worse. Energy band and charge-carrier engineering can significantly improve the electronic transport properties of CoSb3-based materials while optimizing the thermal transport properties. Therefore, the decoupling of thermal and electronic transport properties of CoSb3-based materials can be realized by energy band and charge-carrier engineering. This review summarizes some methods of optimizing synergistically the electronic and thermal transport properties of CoSb3 materials through the energy band and charge-carrier engineering strategies. Energy band engineering strategies include band convergence or resonant energy levels caused by doping/filling. The charge-carrier engineering strategy includes the optimization of carrier concentration and mobility caused by doping/filling, forming modulation doped structures or introducing nano second phase. These strategies are effective means to improve performance of thermoelectric materials and provide new research ideas of development of high-efficiency thermoelectric materials.  相似文献   

13.
Xin Zhao 《中国物理 B》2022,31(11):117202-117202
The misfit layer compound (SnS)1.2(TiS2)2 is a promising low-cost thermoelectric material because of its low thermal conductivity derived from the superlattice-like structure. However, the strong covalent bonds within each constituent layer highly localize the electrons thereby it is highly challenging to optimize the power factor by doping or alloying. Here, we show that Bi doping at the Sn site markedly breaks the covalent bonds networks and highly delocalizes the electrons. This results in a high charge carrier concentration and enhanced power factor throughout the whole temperature range. It is highly remarkable that Bi doping also significantly reduces the thermal conductivity by suppressing the heat conduction carried by phonons, indicating that it independently modulates phonon and charge transport properties. These effects collectively give rise to a maximum ZT of 0.3 at 720 K. In addition, we apply the single Kane band model and the Debye-Callaway model to clarify the electron and phonon transport mechanisms in the misfit layer compound (SnS)1.2(TiS2)2.  相似文献   

14.
In this paper we suggest a number of device applications of n-i-p-i doping superlattices. The concept of these devices is based on the unusual electronic properties of this new class of semiconductors such as extremely long excess carrier lifetime, tunable band gap and carrier concentration. Emphasis will be on high-sensitivity low-noise photodetectors, tunable lasers, optical amplifiers, and on ultrafast devices for the generation, modulation and detection of optical signals.  相似文献   

15.
Thermoelectric power generators require high-efficiency thermoelectric materials to transform waste heat into usable electrical energy. An efficient thermoelectric material should have high Seebeck coefficient and excellent electrical conductivity as well as low thermal conductivity. Graphene, the first truly 2D nanomaterial, exhibits unique properties which suit it for use in thermoelectric power generators, but its application in thermoelectrics is limited by the high thermal conductivity and low Seebeck coefficient resulting from its gapless spectrum. However, with the possibility of modification of graphene's band structure to enhance Seebeck coefficient and the reduction of its thermal conductivity, it is an exciting prospect for application in thermoelectric power generation. This article examines the electronic, optical, thermal, and thermoelectric properties of graphene systems. The factors that contribute to these material properties in graphene systems like charge carriers scattering mechanisms are discussed. A salient aspect of this article is a synergistic perspective on the reduction of thermal conductivity and improvement of Seebeck coefficient of graphene for a higher thermoelectric energy conversion efficiency. In this regard, the effect of graphene nanostructuring and doping, forming of structural defects, as well as graphene integration into a polymer matrix on its thermal conductivity and Seebeck coefficient is elucidated.  相似文献   

16.
孙政  陈少平  杨江锋  孟庆森  崔教林 《物理学报》2014,63(5):57201-057201
热电材料是一类能够实现热与电相互转换的功能材料,在制冷和发电领域极具应用潜力.本文采用金属Sb元素非等电子替换Cu3Ga5Te9化学式中的Cu和Te,观察到材料Seebeck系数和电导率提升的现象.这些电学性能的改善与载流子浓度和有效质量的增大及迁移率基本维持不变有关.载流子浓度的提高是由于Sb原子占位在Te晶格位置后费米能级进入到价带所产生的空穴掺杂效应所致,同时也与Cu含量减少后铜空位(V-1Cu)浓度增大相关联.另外,非等电子替换后,阴离子(Te2-)移位导致了晶格结构缺陷参数u和η的改变,其改变量fiu和fiη与材料晶格热导率(κL)的变化密切相关.在766 K时,适量的Sb替换量使材料的最大热电优值(ZT)达到0.6,比Cu3Ga5Te9提高了近25%.因此,通过选择替换元素、被替换元素及替换量有效地调控了材料的电学及热学性能,在黄铜矿结构半导体中实现了非等电子元素替换改善热电性能的思想.  相似文献   

17.
In this article we briefly review new quantum functional compounds primarily based on our recent works.We will highlight the effects of pressures on both materials synthesis and quantum tuning.The contents include(I)"111"-type iron based superconducting system,(II)pressure induced superconductivity in topological insulators and(III)the new diluted magnetic semiconductors with decoupled spin charge doping.  相似文献   

18.
魏侠  闫法光  申超  吕全山  王开友 《中国物理 B》2017,26(3):38504-038504
Transition metal dichalcogenides(TMDCs) have gained considerable attention because of their novel properties and great potential applications. The flakes of TMDCs not only have great light absorption from visible to near infrared, but also can be stacked together regardless of lattice mismatch like other two-dimensional(2D) materials. Along with the studies on intrinsic properties of TMDCs, the junctions based on TMDCs become more and more important in applications of photodetection. The junctions have shown many exciting possibilities to fully combine the advantages of TMDCs, other2 D materials, conventional and organic semiconductors together. Early studies have greatly enriched the application of TMDCs in photodetection. In this review, we investigate the efforts in photodetectors based on the junctions of TMDCs and analyze the properties of those photodetectors. Homojunctions based on TMDCs can be made by surface chemical doping,elemental doping and electrostatic gating. Heterojunction formed between TMDCs/2D materials, TMDCs/conventional semiconductors and TMDCs/organic semiconductor also deserve more attentions. We also compare the advantages and disadvantages of different junctions, and then give the prospects for the development of junctions based on TMDCs.  相似文献   

19.
徐莹莹  阚玉和  武洁  陶委  苏忠民 《物理学报》2013,62(8):83101-083101
采用密度泛函理论PBE0方法在6-31G(d, p) 基组水平上对比研究并六苯纳米环[6]CA及BN取代纳米环[6]CA-BN的几何结构及电子性质. 同时探讨锂离子掺杂对不同体系的芳香性、前线分子轨道、电子吸收光谱及传输性质的影响. 通过电离势、亲合势及重组能的计算, 预测纳米环体系得失电子的能力及传输性能. 结果表明:[6]CA的能隙很小, BN取代后, 能隙明显增大; 锂离子掺杂到两种纳米环中, 在不明显改变前线分子轨道分布的前提下, 几乎同步降低了最高占据轨道、 最低未占据轨道能级, 锂离子掺杂使载流子传输性能得到很大改善; 电子吸收光谱拟合发现, BN取代使吸收光谱很大程度蓝移, 吸收强度明显减小; 而锂离子掺杂对光谱的强度及吸收范围没有明显影响. 关键词: 碳纳米环 硼氮纳米环 锂离子掺杂 密度泛函理论  相似文献   

20.
The Zintl compound Mg_3Sb_2 has been recently identified as promising thermoelectric material owing to its high thermoelectric performance and cost-effective,nontoxicity and environment friendly characteristics.However,the intrinsically p-type Mg_3Sb_2 shows low figure of merit(z T = 0.23 at 723 K) for its poor electrical conductivity.In this study,a series of Mg_(3-x)Li_xSb2 bulk materials have been prepared by high-energy ball milling and spark plasma sintering(SPS) process.Electrical transport measurements on these materials revealed significant improvement on the power factor with respect to the undoped sample,which can be essentially attributed to the increased carrier concentration,leading to a maximum z T of0.59 at 723 K with the optimum doping level x = 0.01.Additionally,the engineering z T and energy conversion efficiency are calculated to be 0.235 and 4.89%,respectively.To our best knowledge,those are the highest values of all reported p-type Mg_3Sb_2-based compounds with single element doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号