首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical study on spin-polarized injection of electrical currents into polymer semiconductors
Institution:School of Science, Shandong Jianzhu University, Fengming Road, Jinan 250101, China
Abstract:Different from electrons and holes in traditional inorganic semiconductors, the charge carriers in polymer semiconductors are spin polarons and spinless bipolarons. In this paper, a theoretical model is presented to describe the spin-polarized injection of electrical currents from a ferromagnetic contact into a nonmagnetic polymer semiconductor. In this model, a new relation of conductivity to concentration polarization for polymer semiconductors is introduced based on a three-channel model to describe the spin-polarized injection of electrical currents under large electrical current densities. The calculated results of the model reveal the effects of the polaron ratio, the carrier concentration polarization, the interfacial conductance, the bulk conductivity of materials, and the electrical current density, etc. on the spin polarization of electrical currents. As conclusions, the large and matched bulk conductivity of materials, the small spin-dependent interfacial conductance, the thin polymer thickness and the large enough electrical current are critical factors for upgrading the spin polarization of electrical currents in polymer semiconductors. Particularly, when the polaron ratio in polymer semiconductors approaches the concentration polarization of the ferromagnetic contact, a modest concentration polarization is sufficient for achieving a nearly complete spin-polarized injection of electrical currents.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号