首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
高亮度大功率InGaAlP红光LED芯片研制   总被引:1,自引:1,他引:0  
报道了大功率高亮度InGaAlP红光LED芯片的设计和工艺制备,实验芯片采用环形插指状电极。和传统的LED芯片相比较,环形插指状电极LED芯片电流扩展分布更均匀,而且更有利于与其它器件的集成。对制备好的芯片进行了I-V特性、光谱特性、光通量和光强的测量。芯片的电性能非常好,其开启电压VT为1.5V;当工作电压达到3V时,工作电流为500mA;在工作电流为350mA时,峰值波长为635nm,半峰全宽为16.4nm,光强为830mcd。在色度学测试中,色坐标为x=0.6943,y=0.3056,显色指数为18.4。因此可以得知高亮度大功率InGaAlP红光LED是未来LED作为普通照明光源应用的第一步,而且将会在科学研究和工业投资的很多应用领域中成为新的焦点。  相似文献   

2.
电极结构优化对大功率GaN基发光二极管性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
张剑铭  邹德恕  徐晨  顾晓玲  沈光地 《物理学报》2007,56(10):6003-6007
在台面结构的GaN基发光二极管(LED)里,电流要侧向传输,当尺寸与电流密度加大之后,由于n型GaN层和下限制层的横向电阻不能忽略,造成了横向电流分布不均匀.通过优化电极结构,以减小电流横向传输距离,制作出两种不同电极结构的大功率GaN基倒装LED.通过比较这两种不同电极结构的GaN基倒装大功率LED的电、光性能,发现在350mA正向电流下,插指电极结构的倒装大功率GaN基LED的正向电压为3.35V,比环形插指电极结构的倒装大功率GaN基LED高0.15V.尽管环形插指电极结构GaN基LED的发光面积略小于插指电极结构GaN基LED,但在大电流下,环形插指电极结构倒装GaN基LED的光输出功率比插指电极结构的倒装大功率LED的光输出功率大.并且在大电流下,环形插指电极结构的倒装大功率LED光输出功率饱和速度慢,而插指电极结构的倒装大功率LED光输出功率饱和明显.这说明优化电极结构能提高电流扩展均匀性,减小焦耳热的产生,改善GaN基LED的性能.  相似文献   

3.
为了改善蓝光大功率LED芯片p电极处的电流拥挤现象,提高大功率LED芯片的外量子效率,在ITO透明导电层与p-GaN间沉积插指型SiO_2电流阻挡层。采用等离子体增强化学气相沉积的方法沉积SiO_2薄膜,再经过光刻和BOE湿法刻蚀技术制备插指型SiO_2电流阻挡层。采用SimuLED仿真软件分析插指型SiO_2电流阻挡层对大功率LED芯片电流扩展性能的影响,研究插指型SiO_2电流阻挡层对大功率LED芯片外量子效率的影响。结果发现,插指型SiO_2电流阻挡层结构可以有效改善p电极附近的电流拥挤现象。与没有沉积插指型SiO_2电流阻挡层的大功率LED芯片相比,光输出功率得到显著的提高。在350 mA的输入电流下,沉积插指型SiO_2电流阻挡层后的大功率LED芯片的外量子效率提高了18.7%。  相似文献   

4.
定性分析了GaN基LED的电流扩展效应,发现电流密度和电流横向扩展的有效长度对电流均匀扩展有很大影响.基于此,对GaN基大功率LED提出了优化的电极结构,以减缓电流拥挤效应,降低器件串联电阻.通过用红外热像仪测量器件表面的温度分布,发现具有优化的环形插指电极结构的GaN基大功率LED表面温度分布比较均匀,证明芯片接触处电流扩展均匀,局部电流密度降低,减小了焦耳热的产生,增强了器件的可靠性.  相似文献   

5.
定性分析了GaN基LED的电流扩展效应,发现电流密度和电流横向扩展的有效长度对电流均匀扩展有很大影响.基于此,对GaN基大功率LED提出了优化的电极结构,以减缓电流拥挤效应,降低器件串联电阻.通过用红外热像仪测量器件表面的温度分布,发现具有优化的环形插指电极结构的GaN基大功率LED表面温度分布比较均匀,证明芯片接触处电流扩展均匀,局部电流密度降低,减小了焦耳热的产生,增强了器件的可靠性. 关键词: 氮化镓 发光二极管 电流扩展 电极结构优化  相似文献   

6.
LED芯片作为LED光源的核心,其质量直接决定了器件的性能、寿命等,因此在内量子效率已达到高水平的情况下,致力于提高光提取效率是推动LED芯片技术发展的关键一步。由于蓝宝石衬底具有绝缘特性,传统LED将N和P电极做在芯片出光面的同一侧,而芯片出光面上的P电极焊盘金属会遮挡吸收其正下方发光区发出的大部分光而造成光损失,为改善这一现象并缓解P电极周围的电流拥挤效应,本文设计制备了在P电极正下方的氧化铟锡(ITO)透明导电层和p-GaN之间插入SiO_2薄膜作为电流阻挡层(CBL)的大功率LED,并与无CBL结构的大功率LED相比较。对未封装的有无CBL结构的LED在350 mA电流下进行正向偏压,辐射通量,主波长等裸芯性能测试,结果显示两种芯片的正向偏压均集中在3~3.1 V,而有CBL结构的LED光输出功率有明显提升,这是因为CBL阻挡了电流在P电极正下方的扩散,减少流向有源区的电流密度,故减小了P电极对光的吸收和遮挡,且电流通过CBL引导至远离P电极的区域,缓解了电极周围的电流拥挤。对两种芯片进行相同结构和工艺条件的封装,并对封装样品进行热特性及10~600 mA的变电流光电特性测试,得到两种器件的发光光谱及光功率等光学特性。结果表明随着电流增加,两种器件的光谱曲线均发生蓝移,且有CBL结构的LED主波长偏移量较无CBL结构LED少10 nm,可见有CBL结构的LED光谱受驱动电流变化的影响更小,因此其显色性能更为稳定。而在小电流条件下, CBL对器件光功率的影响不大,随着工作电流的增大, CBL对器件光功率的改善效果逐渐提升。在大电流条件下,无CBL结构的LED结温更高,正向电压更低,随电流的增大二者之间的电压差增大。在25℃的环境温度, 350 mA工作电流下,加入CBL结构使器件电压升高约0.04 V,但器件光功率最高提升了9.96%,且热阻明显小于无CBL结构器件,说明有CBL结构LED产热更少。因此CBL结构大大提高了器件的光提取效率,并使其光谱漂移更小,显色性能更为稳定。  相似文献   

7.
基于金属线路板的新型大功率LED及其光电特性研究   总被引:13,自引:4,他引:9  
李炳乾 《光子学报》2005,34(3):372-374
设计、制作了基于金属线路板和板上芯片技术的大功率白光LED,对其光电特性进行了实验测量,输入电流达到800 mA,对应的输入功率3.3 W,大功率LED的输出光通量才达到饱和.输入电流达到900 mA,对应的输入功率3.8 W,大功率LED电流—电压特性仍未表现出饱和特性.实验结果表明,采用金属线路板和板上芯片技术可以得到良好的散热特性,大大提高LED的输入功率.同时还测量了光谱分布、光通量、色坐标随电流的变化情况,对其中的变化规律进行了理论分析.  相似文献   

8.
针对目前蓝宝石衬底上外延生长制备的GaN基半导体发光二极管(LED)器件存在电流分布不均匀的问题,建立了LED的电流扩展模型,提出了定量评价其特性的参数和标准。通过用有限元方法计算LED中电流的三维空间分布,对不同的电极结构进行了定量的比较,给出了优化的电极结构。计算结果显示,在相同工艺参数下,采用插指型电极结构的LED与采用传统型电极结构和扩展正极型电极结构的LED相比,电流扩展更均匀,串联电阻更小。在此基础上,对插指型电极结构作了进一步的参数优化,得出了使LED的串联电阻取最小值时的插指型电极的结构参数。根据优化得到的参数制作了相应的LED样品,并与采用扩展正极型电极结构的LED做了对比实验。实验结果表明,计算得出的结果与实验结果符合得很好。采用了优化后的插指型电极结构的LED与采用扩展正极型电极结构的LED相比,前者的串联电阻仅为后者的44.4%。  相似文献   

9.
利用金属有机气相化学沉积(MOCVD)技术在蓝宝石图形衬底上生长GaN基蓝光LED,并系统研究了不同中高温GaN插入层厚度对其光电性能的影响。利用芯片测试仪和原子力显微镜(AFM)表征了GaN基蓝光LED外延片的光电性能以及表面形貌。当中高温GaN插入层厚度从60 nm增加至100 nm时,V形坑尺寸从70~110 nm增加至110~150 nm。当注入电流为20 mA时,LED芯片的光功率从21.9 mW增加至24.1mW;当注入电流为120 mA时,LED芯片的光功率从72.4 mW增加至82.4 mW。对V形坑尺寸调控LED光电性能的相关物理机制进行了分析,结果表明:增大V形坑尺寸有利于增加空穴注入面积和注入效率,进而提高LED器件的光功率。  相似文献   

10.
设计并制备了12 V 的GaN基绿光高压发光二极管(LED),并对其进行了变电流测试。研究了绿光高压LED的正向电压、峰值波长、光功率以及光效等重要参数随注入电流的变化关系,电流变化范围为3~50 mA,测试温度为25 ℃。实验结果表明:电流对绿光高压LED的光电特性有很大影响。在驱动电流为20 mA时,对应电压为14 V。随着注入电流的增大,峰值波长蓝移了2 nm。随着电流的增大,光功率近似于线性增加。在注入电流从3 mA增大到20 mA的过程中,光效降低了约61%;在注入电流从20 mA增大到50 mA的过程中,光效降低了约39%。这说明高压LED在大电流驱动时,光效降低的幅度比较缓慢。上述结果对 GaN基绿光高压 LED 的改进优化具有一定的参考价值。  相似文献   

11.
设计并制备了12 V的GaN基绿光高压发光二极管(LED),并对其进行了变电流测试。研究了绿光高压LED的正向电压、峰值波长、光功率以及光效等重要参数随注入电流的变化关系,电流变化范围为3~50mA,测试温度为25℃。实验结果表明:电流对绿光高压LED的光电特性有很大影响。在驱动电流为20 mA时,对应电压为14 V。随着注入电流的增大,峰值波长蓝移了2 nm。随着电流的增大,光功率近似于线性增加。在注入电流从3 mA增大到20 mA的过程中,光效降低了约61%;在注入电流从20 mA增大到50 mA的过程中,光效降低了约39%。这说明高压LED在大电流驱动时,光效降低的幅度比较缓慢。上述结果对GaN基绿光高压LED的改进优化具有一定的参考价值。  相似文献   

12.
刘丽  胡晓龙  王洪 《发光学报》2016,37(3):338-345
首先利用电流路径模型分析n型电极尺寸及间距等对垂直结构发光二极管(VS-LEDs)电流分布均匀性的影响,依此设计出一种螺旋状环形结构电极。其次,通过建立有限元分析软件Comsol仿真模型模拟VSLEDs有源层的电流密度分布,发现螺旋状环形结构电极的环间距越小,电流密度分布越均匀。最后,利用VS-LEDs芯片制备技术实现具有螺旋状环形电极的垂直结构LED芯片。实验结果显示,在350 m A电流驱动下,电极环间距为146.25μm的芯片具有最大的功能转换效率,达到26.8%。  相似文献   

13.
《发光学报》2021,42(9)
高功率密度的陶瓷封装LED器件在大电流工作时,其顶面发光均匀性是该类器件的关键指标。本文在3.5 mm×3.5 mm的氮化铝陶瓷基板上金锡共晶了1.905 mm×1.830 mm(75 mil×72 mil)的LED倒装蓝光大功率芯片,然后分别制作成蓝光器件和白光器件,并分别对器件顶面的微区发光均匀性进行了研究。结果表明,蓝光器件在电流3 A时,其顶面光强分布均匀,均匀性受N电极孔和电极间隙的影响较小;在4~8 A电流时,蓝光器件顶面光强分布不均匀,贯穿N电极孔测试区的光强大于电极孔之间测试区的光强,电极间隙区光强最低,离N电极孔越远的测试点光强越低;蓝光器件在8 A时整体光强达到饱和,而不同微区的光饱和程度及峰值波长随电流的变化有所不同;白光器件在0~4 A电流时,其顶面光强分布均匀。  相似文献   

14.
Si衬底功率型GaN基绿光LED性能   总被引:3,自引:3,他引:0  
对本实验室在Si(111)衬底上MOCVD法生长的芯片尺寸为400 μm×600μm功率型绿光LED的光电性能进行研究.带有银反射镜的LED在20 mA的电流下正向工作电压为3.59 V,主波长518 nm,输出光功率为7.3 mW,90 mA下达到28.2 mW,发光功率效率为7.5%,光输出饱和电流高达600 mA.在200 mA电流下加速老化216 h,有银反射镜的LED光衰小于尤银反射镜的LED,把这一现象归结于Ag反射镜在提高出光效率的同时,降低了芯片奉身的温度.本器件有良好的发光效率,光衰和光输出饱和电流等综合特性表明,Si衬底GaN基绿光LED具有诱人的发展前景.  相似文献   

15.
白光发光二极管的制备技术及主要特性   总被引:19,自引:5,他引:14  
利用发射波长为470nm的蓝光发光二极管作为基础光源,通过荧光粉转换方法制备白光发光二极管,荧光粉主要采用稀土激活的铝酸盐Y3Al5Ol2:Ce3 (YAG)。在工作电流为15mA条件下,所研制的白光LED的法向光强为2890mcd;色坐标为x=0.29,y=0.33;显色指数为77;流明效率为14.9lm/w。研究制备了不同色温的白光LED,色温范围从2700~8000K,研究了色温与色坐标之间的对应关系。并且与国外同类产品进行比较。部分指标已经超过了国外同类产品水平。  相似文献   

16.
马莉  沈光地  陈依新  蒋文静  郭伟玲  徐晨  高志远 《物理学报》2014,63(3):37201-037201
针对AlGaInP系发光二极管(LED)电极阻挡出光、衬底吸收、全反射角小导致器件出光效率低、热积累大、饱和特性差等问题,提出了一种具有复合电流输运增透窗口层、复合DBR反射镜和电流阻挡层结构的新型LED,并测试了其饱和特性和寿命.电流分布模拟显示:新型LED电极下仅存在极小的无效电流;实验结果表明新型LED出光效率高,饱和电流大,饱和电流时光强约为常规LED的3倍,光电性能明显提升.器件饱和特性和老化实验研究显示:新型LED寿命长达17.8×104h,器件内部发热量低,具有高饱和特性和高可靠性,适合在大电流大功率下工作.  相似文献   

17.
研究对比了InGaN/GaN多量子阱发光二极管中p电极下的不同SiO2电流阻挡层的光电特性。6种样品被分为3组:普通表面、表面粗化、表面粗化+边墙腐蚀。每组都有两种结构,一种具有电流阻挡层,另一种没有电流阻挡层。每组中,具有电流阻挡层的LED在20 mA下的正向电压分别为3.156,3.282,3.284 V,略高于不含电流阻挡层的样品(Vf=3.105,3.205,3.210 V).但是,具有电流阻挡层的LED的光效和光功率要优于无电流阻挡层的器件,在20 mA下的光功率分别提高了10.20%、12.19%和11.49%。这些性能的提升都要归功于电流阻挡层良好的电流扩展效应,同时电流阻挡层还可以减小p电极下的寄生光吸收。  相似文献   

18.
设计并制备了51 V高压LED。对器件进行了大电流冲击试验并对器件的损毁原因进行了分析。运用有限元分析软件ANSYS对LED关键结构部位进行参数化建模及热分布模拟,得到其稳态的温度场分布;然后经过与红外热像仪成像图对比,得出电极烧毁的原因在于芯粒连接处的电极过薄过窄而导致的电阻过大,为后续设计更可靠的高压LED提供了参考。对芯片分别进行蓝光及色温5 000 K的白光封装,并分别测量了热阻,涂覆荧光粉的白光灯珠的热阻要比没有涂覆荧光粉的蓝光灯珠高约4℃/W。同时,51 V高压LED的热阻比1 W大功率LED要高,说明高压LED的散热性能比常规LED要差,这可能与高压LED具有深沟槽及众多的互联电极结构有关。  相似文献   

19.
设计并制备了51 V高压LED。对器件进行了大电流冲击试验并对器件的损毁原因进行了分析。运用有限元分析软件ANSYS对LED关键结构部位进行参数化建模及热分布模拟,得到其稳态的温度场分布;然后经过与红外热像仪成像图对比,得出电极烧毁的原因在于芯粒连接处的电极过薄过窄而导致的电阻过大,为后续设计更可靠的高压LED提供了参考。对芯片分别进行蓝光及色温5 000 K的白光封装,并分别测量了热阻,涂覆荧光粉的白光灯珠的热阻要比没有涂覆荧光粉的蓝光灯珠高约4℃/W。同时,51 V高压LED的热阻比1 W大功率LED要高,说明高压LED的散热性能比常规LED要差,这可能与高压LED具有深沟槽及众多的互联电极结构有关。  相似文献   

20.
发光二极管(LED)具有耗电省、灵敏度高的优点,并且有多种颜色.一般直径为Φ5mm的发光二极管工作电流为15mA,但当电流为0.5mA时,已有清楚显示,用于演示实验时,最好选用直径为12mm的高亮度管.采用LED做电学实验,可取得比传统方法好得多的效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号