首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用蚕豆叶片可见-近红外反射光谱结合导数光谱对健康、少量、大量虫害三种等级的实验样本进行光谱特征分析,并选择虫害检测最优波段。采用Hadoop,Spark和VMWare虚拟机搭建云计算平台,使用MLlib机器学习库实现人工神经网络(ANN)和支持向量机(SVM)分类算法,并对三种等级蚕豆叶片全波段和最优波段光谱进行分类建模与预测。结果表明ANN虫害光谱分类模型准确率优于SVM虫害光谱分类模型,并且在云平台上运行效率更高,同时全光谱波段的预测准确性高于最优波段。通过扩展光谱数据集,云计算技术在光谱数据挖掘中的计算效率有显著提升。云计算分类检测可以为作物生物胁迫光谱识别提供新的技术和方法。  相似文献   

2.
助推段导弹有高温、大面积的尾焰,根据尾焰光谱特征可准确识别导弹。将其应用到天基预警系统能够使导弹防御系统趋于完善,但光谱信息数据量庞大,从获取光谱信息到识别光谱信息需要耗费大量时间。为此,寻找能够代表导弹尾焰光谱的特征光谱,使用模糊算法对特征光谱进行数据处理,以达到准确、快速识别的目的。利用已有的红外图像和大气、云层、导弹及飞机尾焰光谱数据进行特征光谱图像拟合,经信噪比分析后可知,特征光谱图像比全波段红外光谱图像的信噪比高。分别使用模糊算法和光谱角测度对拟合图像进行处理,结果表明模糊算法的实时性和准确性优于光谱角测度。  相似文献   

3.
软腐病是猕猴桃采后贮藏和销售过程中危害最严重的真菌病害,其潜伏期长,在染病早期还未表现出明显病状时,依靠人工筛选很难将其分类。为此应用高光谱成像技术(470~900 nm)对软腐病的早期分类检测展开研究。采集了健康猕猴桃以及感染软腐病的早期和晚期猕猴桃共295个高光谱图像,并采用Kennard-Stone算法将样本按照7∶3划分为训练集和测试集样本。首先对样本进行感兴趣区域的选择,然后取该区域的平均光谱作为样本的原始光谱曲线。对原始光谱曲线采用主成分分析(PCA)、连续投影算法(SPA)和竞争性自适应重加权算法(CARS)进行光谱特征的提取。与此同时,对SPA求解过程中的8个特征波段使用非下采样轮廓波变换(NSCT)进行波段融合获得融合图像,然后使用灰度共生矩阵法(GLCM)提取融合图像的纹理特征。最后将光谱特征和纹理特征进行融合并分别建立最近邻算法(KNN)、随机森林(RF)以及支持向量机(SVM)分类模型进行猕猴桃软腐病的早期分类检测。此外,还与其他文献中使用主成分图像或特征波段提取的纹理特征进行了对比。该研究主要创新点为:使用NSCT对特征波段图像进行融合后再提取其纹理特征,既降...  相似文献   

4.
血痕的种属鉴别在刑事技术和检验检疫等领域有重要的实践意义,拉曼光谱技术为血痕种属鉴别提供了思路。实验采集人血及猪、鸡、鸭、牛、鼠5种动物的血样并获取其拉曼光谱,采用Savitzky-Golay方法平滑降噪,airPLS方法进行基线校正,选取100~1 700 cm-1波段进行实验。训练集有600组数据,测试集有300组拉曼光谱数据。第一部分实验对比了PLS-DA,LDA,PCA+LDA,SVM和PCA+SVM等方法,测试集准确率分别为84.0%,49.3%,78%,83.0%和85.7%,验证了降维算法结合SVM分类器的有效性。第二部分采用互信息算法、遗传算法和等间隔组合三种波段选择算法,结合SVM分类器做对比实验,结果显示互信息结合SVM算法的分类准确率最优,在选择波段数为50时,测试集准确率达到86.0%。在波段选择数为300时,三种波段选择算法结合SVM分类器的准确率都达到93%左右,大幅高于传统分类方法。实验结果表明,采用波段选择算法进行光谱降维,可以有效的提高算法的准确率和鲁棒性,同时使拉曼光谱种属鉴定的可解释性更强。波段选择算法确定了血痕鉴别的关键波段位置,对设计用于执法的便携式拉曼系统也有重要意义。  相似文献   

5.
高光谱技术诊断马铃薯叶片晚疫病的研究   总被引:2,自引:0,他引:2  
鉴于晚疫病可对马铃薯造成毁灭性灾害,对受晚疫病胁迫的马铃薯叶片进行了高光谱图像特征研究。旨在探索马铃薯叶片的高光谱图象特征与晚疫病害程度的关联,以实现准确、快速、无损的晚疫病诊断。采用60片马铃薯叶片,对其中48片采用离体方式接种晚疫病菌,所剩12片作为对照,染病前后连续观测7天,得到染病和健康样本。健康和染病样本按照染病时间和染病程度不同采用374~1 018 nm波段范围的可成像高光谱仪分别采样,基于ENVI软件处理平台提取图像中感兴趣区的光谱信息,并采用移动平均平滑、导数处理、光谱变换、基线变换等预处理方法提高信噪比,建立了最小二乘支持向量机(LS-SVM)的识别模型。9个模型中,基于原始光谱(不预处理)和光谱变换预处理后的数据所建立的模型预测效果最好,识别率均达到了94.87%。表明基于高光谱成像技术可以实现晚疫病胁迫下马铃薯病害程度的有效区分。  相似文献   

6.
牛奶中包含着很多人体需要的营养元素,如脂肪、蛋白质、钙等;对牛奶营养元素进行分析是牛奶安全检测关键的一部分。高光谱技术可以有效地结合图像和光谱数据识别牛奶种营养元素。为了实现对牛奶中蛋白质含量快速、精确的预测,采用竞争性自适应重加权(CARS)算法选取特征波长,并提出一种基于麻雀搜索算法(SSA)优化支持向量机(SVM)实现对牛奶蛋白质含量预测。利用高光谱仪获取牛奶反射光谱(400~1 000 nm)。通过选取归一化(N)、标准化(Standardization)和多元散射校正(MSC)对原始的牛奶数据进行光谱降噪处理提高光谱利用率;利用竞争性自适应重加权算法和连续投影算法(SPA)对经过处理的牛奶光谱数据提取特征波长,求取蛋白质和光谱间的相关系数并进行重要性排序,获取重要的特征波段;最后,通过遗传算法(GA)优化SVM, 粒子群算法(PSO)优化SVM和偏最小二乘法(PLS)算法对牛奶蛋白质进行预测并比较预测结果,为了提高蛋白质预测的精度和模型稳定性,提出利用SSA对SVM的核函数g和惩罚参数c进行优化,以均方根误差(RMSE)作为适应度函数,通过迭代选择最优的回归参数训练模型。牛奶数据预测结果表明最优组合模型为:MSC-CARS-SSA-SVM。模型测试集的决定系数R2为0.999 6,均方根误差RMSE为0.001 1,耗时4.112 1 s。结果表明:使用CARS算法能实现特征波段的提取和冗余信息的剔除,从而提高模型效率,简化了算法的复杂度;SSA算法优化SVM的参数,通过迭代更新麻雀最优位置,可以快速得到全局最优解,与SVM,GA-SVM,PSO-SVM和PLS相比,牛奶蛋白质的预测准确度和模型稳定性都得到了明显提高,满足了对乳品检测的精确度要求,是快速检测牛奶蛋白质的一个可行新方法。为光谱模型的优化及预测模型精度的提高提供参考。  相似文献   

7.
天基红外预警卫星远距离探测时获取的弹道目标特征信息匮乏,代表物质固有属性差异的光谱信息可作为目标识别的主要依据。将尾焰特征光谱信息作为识别的重要手段,综合考虑尾焰光谱吸收特性和特征光谱提取原则,采用改进的向前和向后间隔偏最小二乘法建立特征波段提取模型,以新型自适应变权重光谱相似性测度(SAVM)实现目标与特征光谱数据库的匹配,提出了基于尾焰特征光谱的主动段弹道目标识别方法。仿真实验进行了特征波段提取与SAVM优越性的验证,相较于全波段光谱匹配识别法,提出的方法所需数据量更小、识别精度更高。研究内容可为红外预警卫星系统优化探测识别能力提供有意义的参考。  相似文献   

8.
花椰菜在生长过程中容易感染灰霉病而导致产量减少,现有的分选方法难以在早期检测到感染灰霉病的花椰菜。应用近红外光谱技术实现花椰菜灰霉病的早期判别检测,对花椰菜病害防治意义重大。以接种灰霉菌孢的花椰菜为研究对象,首先,采集对照组和处理组花椰菜的近红外光谱曲线并进行去噪处理,获取4个批次共608个样本(接菌0.5,1,2和3 d每日的健康和染病花椰菜各76朵)在500~2 400 nm波段范围内的光谱曲线。同时测量花椰菜样本的多酚氧化酶(polyphenol oxidase,PPO)、过氧化物酶(peroxidase,POD)与丙二醛(malondialdehyde,MDA)的活性值,采用单因素方差分析(analysis of variance, ANOVA)对单一批次的健康和染病花椰菜品质指标进行统计分析。然后,采用K-S算法(Kennard-Stone)将单天的样本划分为校正集(114个样本)与预测集(38个样本),使用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)进行4个批次的花椰菜样本的光谱数据特征波段提取,并基于偏最小二乘回归(partial least square regression,PLSR)算法建立单一批次判别模型和组合批次判别模型。结果表明:在接菌早期,用肉眼无法实现染病花椰菜样本的识别,仅在染病第3 d后部分染病样本病害特征明显时可实现判别。测定对照组和处理组花椰菜品质指标后发现:染病2 d后,对照组和染病组样本的所有品质指标均存在显著性差异(p<0.05),但在第0.5 d时各项指标均无显著性差异,仅在第1 d时MDA值出现显著性差异,说明从品质指标上无法判别早期染病花椰菜。建立单一批次下的PLSR判别模型后表明:第一批次样本(0.5 d)所建模型的判别准确率达到了94.74%,预测集均方根误差为0.835,第二至第四批次(接菌1~3 d)所建判别模型准确率达到100%,表明PLSR模型可以实现单一批次下早期染病花椰菜样本的检测;PLSR组合判别模型在第0.5 d和第1 d判别准确率分别达到了92.11%与97.37%,可以判别出大部分的患病花椰菜,但是PLSR组合批次建模效果低于PLSR单一批次建模。结果表明,基于近红外光谱技术,通过CARS算法提取特征波段结合PLSR模型的建立,可以在早期检测出感染灰霉病的花椰菜,为花椰菜灰霉病的早期检测提供参考,具有一定的实际应用价值。  相似文献   

9.
稻瘟病是世界公认的水稻重大病害之一。实现稻瘟病害的早期分级检测,对水稻病害早期防治及精准用药具有重要意义。以大田自然发病水稻为研究对象,采集稻瘟病发病早期染病叶片和健康叶片,获取所有叶片样本在400~1 000 nm波段内的高光谱图像并提取光谱数据。水稻在染病之初不会立刻出现病斑,无法识别采集到的无斑叶片是否染病。为实现对自然染病叶片早期无病斑状态的识别,提出取染病叶片贴近病斑的非病斑区域高光谱数据作为染病等级中的1级样本进行检测分析。按照病斑面积将样本划分为4个等级:健康叶片为0级(109片)、染病无病斑为1级(116片)、病斑面积小于10%为2级(107片)、病斑面积小于25%为3级(101片)。运用主成分分析(PCA)和竞争性自适应重加权(CARS)算法进行特征变量选取,CARS提取的特征波段较多,利用PCA算法对其进一步降维。分别以全谱数据、PCA提取的4个、8个、CARS选择的21个、CARS-PCA提取的6个特征变量为输入,建立水稻稻瘟病早期高光谱支持向量机(SVM)、PCA4-SVM、PCA8-SVM、CARS-SVM和CARS-PCA-SVM检测模型。结果显示,所有模型对各级样本的检测准确率均较高,其中,对1级样本的检测准确率与其他级别相当,识别效果较好;所有模型的样本总体准确率均大于94.6%,CARS-SVM模型的总体准确率最高为97.29%,CARS-PCA-SVM模型为96.61%略低于CARS-SVM模型,但其输入变量仅为6个,较CARS-SVM的21个减少71.43%,模型更为简洁、更利于提高检测速度。因此,综合评价CARS-PCA-SVM模型最优,各级准确率分别为97.30%,94.87%,94.29%和100.00%。结果表明,所建模型检测准确度较高,可以实现对大田自然发病的稻瘟病早期分级检测,为稻瘟病染病之初无病斑叶片的检测提供新思路,为水稻稻瘟病早期防治、精准施药及检测仪器开发提供理论依据。  相似文献   

10.
针对马铃薯空心病的难以检测问题,提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine,SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个,空心75个)作为研究对象,搭建了马铃薯半透射高光谱图像采集系统,采集了马铃薯样本半透射高光谱图像(390~1 040 nm),对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理,建立了全波段的SVM判别模型,模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能,采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS)结合连续投影算法(successive projection algorithm, SPA)对光谱全波段520个变量进行变量选择,最终确定了8个光谱特征变量(454,601,639,664,748,827,874和936 nm),所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm,AFSA)、遗传算法(genetic algorithm,GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析,确定AFSA为最优优化算法,最优模型参数为c=10.659 1,g=0.349 7,确定AFSA-SVM模型为马铃薯空心病的最优识别模型,该模型总体识别率达到100%。试验结果表明:基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测,也为马铃薯空心病的快速无损检测提供技术支持。  相似文献   

11.
高光谱图像和叶绿素含量的水稻纹枯病早期检测识别   总被引:1,自引:0,他引:1  
基于高光谱成像技术和化学计量方法,实现了对水稻纹枯病病害的早期检测识别。以幼苗时期的水稻植株为研究对象,对其进行纹枯病病菌侵染,获得染病植株,采集358~1 021 nm波段范围的高光谱图像,三次实验共240个样本,包括染病植株120个样本和健康植株120个样本。根据高光谱图像的光谱维,对染病水稻叶片和健康水稻叶片提取感兴趣区域(ROI),利用感兴趣区域的光谱数据,对其进行Savitzky-Golay(SG)平滑、Savitzky-Golay(SG)一阶求导、Savitzky-Golay(SG)二阶求导、变量标准化(SNV)和多元散射校正(MSC)预处理,建立线性判别分析(LDA)和支持向量机(SVM)分类模型,结果表明:采用SG二阶求导预处理后的线性判别分析(LDA)模型取得了较好的性能,正确识别率在建模集达98.3%,在预测集达95%;利用载荷系数法(x-loading weights, x-LW)对原始光谱和5种预处理的光谱数据进行特征波长提取,然后根据选取的特征波长建立线性判别分析(LDA)和支持向量机(SVM)分类模型,其中采用SG二阶求导预处理后提取的12个特征波长的线性判别分析(LDA)模型取得了较好的性能,其正确识别率在建模集达97.8%,在预测集达95%,而且基于载荷系数法建立的模型性能与全波段相当,可以通过载荷系数法减少数据量对水稻纹枯病病害进行识别;根据高光谱图像的图像维,研究了基于图像主成分分析、基于概率滤波和基于二阶概率滤波的图像特征提取方法,利用提取的特征变量建立反向传播神经网络(BPNN)和支持向量机(SVM)分类模型,其中基于图像主成分分析的反向传播神经网络(BPNN)模型取得了较好的性能,建模集准确识别率达90.6%,预测集的准确识别率达83.3%;根据高光谱图像光谱维和图像维的最优模型,特将叶绿素含量作为建模的另一个特征,分别与光谱特征、图像特征组合,建立反向传播神经网络(BPNN)和线性判别分析(LDA)模型,提出基于光谱特征加叶绿素含量、图像特征加叶绿素含量和光谱、图像特征加叶绿素含量三种组合方式,其中,光谱特征和图像特征分别与叶绿素组合的方式比之前单独的光谱和图像特征建模性能都有所提升,而且三种组合方式中光谱特征加叶绿素含量的反向传播神经网络(BPNN)建模方式取得本研究所有建模方式中较优的性能,其准确识别率在建模集达100%,在预测集达96.7%。以上研究表明,基于高光谱图像和叶绿素含量对水稻纹枯病病害进行早期识别是可行的,为水稻病害的早期识别提供了一种新方法。  相似文献   

12.
快速、准确的进行光谱重建是高保真印刷复制研究的难点。针对多个基色参与复制造成颜色在光谱表征和油墨配比之间转换模型复杂的问题,提出了一种用于高保真印刷的特征光谱提取和匹配方法。该方法利用光谱的导数变换对印刷基色油墨的特征光谱波段进行了筛选和提取,在此基础上提出了特征光谱的多阈值编码算法;针对高保真印刷中的分区判断问题,利用导数平均特征光谱表示各分区特征,并通过目标光谱与各分区的导数平均特征光谱的光谱匹配算法,解决了高保真印刷中的分区判断问题。实验结果表明,提取的特征光谱波段能够显著代表各个基色的光谱特征,基于特征光谱的色彩转换模型精度高于基于全波段的色彩转换模型;光谱匹配算法在判断分区上达到了很高的精度,极大的提高了效率,具有较高的实用性。  相似文献   

13.
针对高光谱图像和高空间分辨率图像配准过程中,各波段之间差异较大难以选择高精度配准波段的问题,提出一种基于Cram′er-Rao下限(CRLB)理论的高光谱图像高精度匹配波段选择算法。利用波段选择的方法选出高光谱图像中若干信息量大、相关性小的波段;将其分别与高空间分辨率图像做配准,并计算配准结果相应的CRLB;根据CRLB选择高精度配准波段。通过比较配准后的CRLB和均方根误差,验证CRLB具有较好配准质量评价性能。通过CRLB与其他方法的选择波段配准结果比较可知,本文算法选择的波段配准精度较高。上述波段为高光谱图像和高空间分辨率图像的配准提供更好的数据。  相似文献   

14.
基于高光谱成像和判别分析的黄瓜病害识别   总被引:3,自引:0,他引:3  
利用光谱成像技术(400~720 nm)识别黄瓜白粉病、角斑病、霜霉病、褐斑病和无病区域。构建高光谱图像采集系统进行样本图像的采集,预处理和光谱信息的提取。由于获得的原始光谱数据量很大,为了减少后续运算量,提高准确率,采用逐步判别分析和典型判别分析两种方法进行降维。逐步判别从55个波段中选择12个波段,典型判别从55个波段中提取2个典型变量。利用选择的光谱特征参数建立病害识别模型。逐步判别构建的模型对训练样本和测试样本的判别准确率分别为100%和94%,典型判别构建的模型对训练样本和测试样本的判别准确率均为100%。说明利用高光谱成像技术可以进行黄瓜病害的快速、准确识别,并为实现可见光谱范围内黄瓜病害的田间实时在线检测提供了可能。  相似文献   

15.
提出了一种基于太赫兹(THz)光谱技术以及布谷鸟搜索(CS)算法优化支持向量机(SVM)的有效的转基因产品鉴别方法(CS-SVM)。实验采用太赫兹时域光谱(THz-TDS)系统测量了三种转基因大豆种子及其亲本样品在0.2~1.2 THz波段的THz光谱,并采用SVM方法对转基因和非转基因大豆种子进行了分类鉴别研究,其中SVM的两个重要参数(惩罚因子和核参数)采用CS算法进行优化。实验结果表明,应用THz光谱技术结合CS-SVM方法为转基因和非转基因生物的检测和识别提供了一种快速、无损和可靠的分析方法。  相似文献   

16.
基于正交投影散度的高光谱遥感波段选择算法   总被引:2,自引:0,他引:2  
由于高光谱数据的海量高维特征,对其进行降维处理成为高光谱遥感研究的一个重要问题.波段选择算法由于能够有效地保留原始数据的信息,在高光谱数据降维及后续的遥感识别与分类等方面具有明显的优越性.文章提出了一种基于正交投影散度(OPD)的波段选择方法,该方法继承了正交子空间投影(OSP)算法的特点,通过把原始数据投影到特征空间...  相似文献   

17.
土壤重金属污染是由于人类活动导致重金属物质大量残留在土壤中,超过土壤环境承载力,这种现象将造成土壤质量退化、生态环境恶化。高光谱遥感可以实现图谱合一,能有效地识别出土壤中不同元素的异常情况。为实现农田土壤重金属高效、准确监测,提出了一种特征提高型竞争性自适应重加权算法(CARS)选取特征波段的粒子群算法(PSO)优化支持向量机(SVM)农田土壤重金属砷(As)含量高光谱估测分析方法。利用CARS对暗室实测光谱值进行粗选;利用一阶导数(FD)、高斯滤波(GF)、归一化(N)进行特征提高;在特征精选阶段利用皮尔逊相关系数(PCC)求取预处理后的光谱指标与土壤重金属As之间的相关系数,获取相关性大于0.6的波段作为特征波段;最后利用PSO对SVM所选择的核函数σ和正则化参数γ进行优化,以均方根误差(RMSE)作为适应度函数,通过迭代最优适应度得到SVM最优参数值。选择江汉平原典型区域洪湖市燕窝镇的土壤为研究对象,预测结果表明基于PSO-SVM算法其验证集的决定系数R~2为0.982 3,均方根误差RMSE为0.521 6,平均绝对误差MAE为0.416 4。主要结论如下:PSO算法优化SVM参数,通过迭代更新个体极值和群体极值,可以迅速获取全局最优解,与支持向量机回归(SVMR)和随机森林回归(RFR)相比,在预测精度有了较大的提高;特征提高型CARS算法可以有效剔除无关信息,提高相关性,且选取波段少,模型简单,大大提高了效率;可以实现土壤污染预警、满足精准农业需求、为后期重金属污染土地生态修复提供数据基础。  相似文献   

18.
针对马铃薯空心病的难以检测问题, 提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine, SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个, 空心75个)作为研究对象, 搭建了马铃薯半透射高光谱图像采集系统, 采集了马铃薯样本半透射高光谱图像(390~1 040 nm), 对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理, 建立了全波段的SVM判别模型, 模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能, 采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS)结合连续投影算法(successive projection algorithm, SPA)对光谱全波段520个变量进行变量选择, 最终确定了8个光谱特征变量(454, 601, 639, 664, 748, 827, 874和936 nm), 所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm, AFSA)、遗传算法(genetic algorithm, GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析, 确定AFSA为最优优化算法, 最优模型参数为c=10.659 1, g=0.349 7, 确定AFSA-SVM模型为马铃薯空心病的最优识别模型, 该模型总体识别率达到100%。试验结果表明: 基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测, 也为马铃薯空心病的快速无损检测提供技术支持。  相似文献   

19.
番茄早疫病感染性强、破坏性大,潜育期症前特征的检测识别是番茄早疫病监测预警和科学防治的关键。在实验室以离体番茄叶片作为研究对象,利用高光谱图像监测番茄叶片早疫病的病程演变情况,结合可见光图像和光谱特征进行数据分析。实验发现,番茄叶片感染早疫病后其近红外光谱平均值和红边反射率随着时间不断降低,且在接种36 h时已出现潜育期病症信息。选择接种36 h的光谱数据作为番茄早疫病潜育期的建模数据,分别利用了主成分(PCA)变换、多元散射校正(MSC)对建模数据进行光谱降维或降噪处理,进而建立梯度提升决策树(GBDT)和支持向量机(SVM)识别模型,并导入数据进行训练识别。讨论了PCA和MSC的预处理方法对梯度提升决策树(GBDT)和支持向量机(SVM)模型识别效果的影响;进一步讨论常见核函数对SVM识别模型的影响,优选出预处理方法和识别模型的组合算法。结果发现,PCA-GBDT、 PCA-SVM(高斯核)、 PCA-SVM(线性核)、 MSC-GBDT、 MSC-SVM(多项式核)这几类组合算法准确率均为95%以上,能很好的实现番茄早疫病潜育期的光谱识别;其中MSC-GBDT的识别召回率和准确率...  相似文献   

20.
提出了一种基于太赫兹(THz)光谱技术以及布谷鸟搜索(CS)算法优化支持向量机(SVM)的有效的转基因产品鉴别方法(CS-SVM)。实验采用太赫兹时域光谱(THz-TDS)系统测量了三种转基因大豆种子及其亲本样品在0.2~1.2THz波段的THz光谱,并采用SVM方法对转基因和非转基因大豆种子进行了分类鉴别研究,其中SVM的两个重要参数(惩罚因子和核参数)采用CS算法进行优化。实验结果表明,应用THz光谱技术结合CS-SVM方法为转基因和非转基因生物的检测和识别提供了一种快速、无损和可靠的分析方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号