首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
肖波齐 《中国物理 B》2013,22(1):14402-014402
Analytical expressions for nucleate pool boiling heat transfer of nanofluid in the critical heat flux (CHF) region are derived taking into account the effect of nanoparticles moving in liquid based on the fractal geometry theory. The proposed fractal model for the CHF of nanofluid is explicitly related to the average diameter of the nanoparticles, the volumetric nanoparticle concentration, the thermal conductivity of nanoparticles, the fractal dimension of nanoparticles, the fractal dimension of active cavities on the heated surfaces, the temperature, and the properties of the fluid. It is found that the CHF of nanofluid decreases with the increase of the average diameter of nanoparticles. Each parameter of the proposed formulas on CHF has a clear physical meaning. The model predictions are compared with the existing experimental data, and a good agreement between the model predictions and experimental data is found. The validity of the present model is thus verified. The proposed fractal model can reveal the mechanism of heat transfer in nanofluid.  相似文献   

2.
Fractal Character for Tortuous Streamtubes in Porous Media   总被引:4,自引:0,他引:4       下载免费PDF全文
An analytical model for fractal dimension of tortuous streamtubes in porous media is derived. The proposed fractal dimension for tortuous streamtubes in porous media is expressed as a function of porosity and scale, and there is no empirical constant in the proposed expression. The model predictions for the fractal dimension of tortuous streamtubes in porous media are in good agreement with those by the box-counting method and with the observations of other researchers.  相似文献   

3.
Fractal Analysis of Surface Roughness of Particles in Porous Media   总被引:1,自引:0,他引:1       下载免费PDF全文
A fractal dimension for roughness height (RH) is introduced to characterize the degree of roughness or disorder of particle surface characters which significantly influence physical-chimerical processes in porous media. An analytical expression for the fractal dimension of RH on statistically self-similar fractal surfaces is derived and is expressed as a function of roughness parameters. The specific surface area (SSA) of porous materials with spherical particles is also derived, and the proposed fractal model for the SSA of particles with rough surfaces is expressed as a function of fractal dimension for RH and fractal dimension for particle size distribution, relative roughness of particle surface, and ratio of the minimum to the maximum particle diameters of spherical particles.  相似文献   

4.
In this paper, the mechanism for fluid flow at low velocity in a porous medium is analyzed based on plastic flow of oil in a reservoir and the fractal approach. The analytical expressions for flow rate and velocity of non-Newtonian fluid flow in the low permeability porous medium are derived, and the threshold pressure gradient (TPG) is also obtained. It is notable that the TPG (J) and permeability (K) of the porous medium analytically exhibit the scaling behavior J ~ K-D'r/(l+Or), where DT is the fractal dimension for tortuous capillaries. The fractal characteristics of tortuosity for capillaries should be considered in analysis of non-Darcy flow in a low permeability porous medium. The model predictions of TPG show good agreement with those obtained by the available expression and experimental data. The proposed model may be conducible to a better understanding of the mechanism for nonlinear flow in the low permeability porous medium.  相似文献   

5.
Fractal Analysis of Power-Law Fluid in a Single Capillary   总被引:2,自引:0,他引:2       下载免费PDF全文
The fractai expressions for flow rate and hydraulic conductivity for power-law fluids in a single capillary are derived based on the fractai nature of tortuous capillaries. Every parameter in the proposed expressions has clear physical meaning. The flow rate and hydraulic conductivity for power-law fluids are found to be related to the tortuosity fractal dimension and the power-law index. The flow rate for power-law fluids increases with the increasing power-law index but decreases with the increasing tortuosity fractal dimension. Good agreement between the model predictions for flow in a fractai capillary and in a converging-diverging duct is obtained. The results suggest that the fractal capillary model can be used to model the power-law fluids with different rheologicai properties.  相似文献   

6.
The correct calibration of coefficients in the inversion model for aerosol mass concentration is the precondition of obtaining highly precise results. The concept of the fractal dimension of scattering equivalent section is presented, and the calibration mechanism of the fractal dimension is discussed. Based on the calibration mechanism, the stability of the fractal dimension is analyzed. Theoretical analysis and experimental results indicate that the fractal dimension obtained by the intersection point calibration method is stable, while that calibrated by the Gauss-Newton method is instable, which only describes the shape characteristic of a small sample. The study of the calibration mechanism for the fractal dimension markedly enhances the present model for aerosol mass concentration.  相似文献   

7.
On the basis of a Rayleigh scattering model for a single nanoparticle illuminated by a TEMoo laser beam, we theoretically and numerically study the speckle formation when nanofluids are illuminated by a TEMoo laser beam. The results show that the laser speckles possess a Gaussian distribution, which are in agreement with the experimental results. The results may be useful for using a laser speckle velocimetry to determine the velocitiies of nanoparticles in nanofluids.  相似文献   

8.
A Particle Resistance Model for Flow through Porous Media   总被引:1,自引:0,他引:1       下载免费PDF全文
A particle model for resistance of flow in isotropic porous media is developed based on the fractal geometry theory and on the drag force flowing around sphere. The proposed model is expressed as a function of porosity, fluid property, particle size, fluid velocity (or Reynolds number) and fractal characters D f of particles in porous media. The model predictions are in good agreement with the experimental data. The validity of the proposed model is thus verified.  相似文献   

9.
We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Carlo method. When the typical relaxation time T of the Brownian process is greater than the mean collision time To, the energy evolution of the system exponentially decays, with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state in which the velocity distribution strongly deviates from the Gaussian one. Three other aspects have also been studied for the steady state: the visualized change of the particle density, the entropy of the system and the correlations in the velocity of particles. And the results of simulations indicate that the system has strong spatial clustering; Furthermore, the influence of the inelasticity and inhomogeneity on dynamic behaviors have also been extensively investigated, especially the dependence of the entropy and the correlations in the velocity of particles on the restitute coefficient e and the fractal dimension D.  相似文献   

10.
刘晓健  凡友华 《中国物理 B》2013,22(3):36101-036101
The T-square fractal two-dimensional phononic crystal model is presented in this article.A comprehensive study is performed for the Bragg scattering and locally resonant fractal phononic crystal.We find that the band structures of the fractal and non-fractal phononic crystals at the same filling ratio are quite different through using the finite element method.The fractal design has an important impact on the band structures of the two-dimensional phononic crystals.  相似文献   

11.
纳米流体对流换热机理分析   总被引:2,自引:0,他引:2       下载免费PDF全文
肖波齐  范金土  蒋国平  陈玲霞 《物理学报》2012,61(15):154401-154401
考虑在纳米流体中纳米颗粒做布朗运动引起的对流换热, 基于纳米颗粒在纳米流体中遵循分形分布, 本文得到纳米流体对流换热的机理模型. 本解析模型没有增加新的经验常数, 从该模型发现纳米流体池沸腾热流密度是温度、纳米颗粒的平均直径、 纳米颗粒的浓度、纳米颗粒的分形维数、沸腾表面活化穴的分形维数、基本液体的物理特性的函数. 对不同的纳米颗粒浓度和不同的纳米颗粒平均直径与不同的实验数据进行了比较, 模型预测的结果与实验结果相吻合. 所得的解析模型可以更深刻地揭示纳米流体对流换热的物理机理.  相似文献   

12.
Based on the fractal distribution of nanoparticles, a fractal model for heat transfer of nanofluids is presented in the Letter. Considering heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids, the formula of calculating heat flux of nanofluids by convection is given. The proposed model is expressed as a function of the average size of nanoparticle, concentration of nanoparticle, fractal dimension of nanoparticle, temperature and properties of fluids. It is shown that the fractal model is effectual according to a good agreement between the model predictions and experimental data.  相似文献   

13.
Nanofluids, a class of solid–liquid suspensions, have received an increasing attention and studied intensively because of their anomalously high thermal conductivites at low nanoparticle concentration. Based on the fractal character of nanoparticles in nanofluids, the probability model for nanoparticle’s sizes and the effective thermal conductivity model are derived, in which the effect of the microconvection due to the Brownian motion of nanoparticles in the fluids is taken into account. The proposed model is expressed as a function of the thermal conductivities of the base fluid and the nanoparticles, the volume fraction, fractal dimension for particles, the size of nanoparticles, and the temperature, as well as random number. This model has the characters of both analytical and numerical solutions. The Monte Carlo simulations combined with the fractal geometry theory are performed. The predictions by the present Monte Carlo simulations are shown in good accord with the existing experimental data.  相似文献   

14.
In this paper, a fractal model for nucleate pool boiling heat transfer of nanofluids is developed based on the fractal distribution of nanoparticles and nucleation sites on boiling surfaces. The model shows the dependences of the heat flux on nanoparticle size and the nanoparticle volume fraction of the suspension, the fractal dimension of the nanoparticle and nucleation site, temperature of nanofluids and properties of fluids. The fractal model predictions show that the natural convection stage continues r...  相似文献   

15.
16.
纳米流体的聚集结构和导热系数模拟   总被引:8,自引:2,他引:6  
本文根据布朗运动理论模拟纳米粒子在流体中的聚集过程,运用分形理论描述纳米粒子团的结构.考虑纳米粒子的运动传热,建立纳米流体的导热系数模型,理论预测值与实验结果显现了良好的一致性。  相似文献   

17.
The antibacterial behaviour of suspensions of zinc oxide nanoparticles (ZnO nanofluids) against E. Coli has been investigated. ZnO nanoparticles from two sources are used to formulate nanofluids. The effects of particle size, concentration and the use of dispersants on the antibacterial behaviour are examined. The results show that the ZnO nanofluids have bacteriostatic activity against E. coli. The antibacterial activity increases with increasing nanoparticle concentration and increases with decreasing particle size. Particle concentration is observed to be more important than particle size under the conditions of this work. The results also show that the use of two types of dispersants (Polyethylene Glycol (PEG) and Polyvinylpyrolidone (PVP)) does not affect much the antibacterial activity of ZnO nanofluids but enhances the stability of the suspensions. SEM analyses of the bacteria before and after treatment with ZnO nanofluids show that the presence of ZnO nanoparticles damages the membrane wall of the bacteria. Electrochemical measurements using a model DOPC monolayer suggest some direct interaction between ZnO nanoparticles and the bacteria membrane at high ZnO concentrations. On visiting from the Tianjin University of Science & Technology, Tianjin, P.R. China.  相似文献   

18.
We propose a new model for the effective thermal conductivities of nanottuids, which is derived from the fact that nanoparticles and clusters coexist in the fluids. The effects of the compactness and the perfectness of the contact between nanoparticles in clusters on the effective thermal conductivity of nanofluids are analysed. The proposed model indicates that the effective thermal conductivity of nanofluids decreases with the increasing concentration of clusters. The model predictions are compared with and are in good agreement with the available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号