首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.  相似文献   

2.
A number of samples that simulate the chemical composition of carbonaceous aerosols emitted by transport into the atmosphere have been synthesized using the method of deposition of organic compounds and sulfuric acid, which are identified in the particulate coverage of diesel and aircraft engine soot particles, onto the surface of elemental carbon. The analysis of water adsorption isotherms allows one to estimate the influence of the surface chemistry of particles on the degree of their hygroscopicity. Water adsorption measurements show that modification of a particle surface by nonpolar organics (aliphatic and aromatic hydrocarbons) leads to the hydrophobization of a soot surface. The impact of polar oxygen-containing organic compounds (ethers, ketones, aromatic, and aliphatic acids) on adsorption capacity with respect to the water of samples that they modify substantially depends on the nature and composition of the hydrophobic part of the molecules. Among the ionic compounds organic acid salts have the most hydrophilization effect, which is comparable with the adsorption capacity of soot with sulfuric acid deposited on its surface. This observation allows one to quantitatively define how the nature of chemical compounds on soot surface influences water adsorption and to estimate the interaction of water molecules with fossil fuel combustion particles in a humid atmosphere.  相似文献   

3.
The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.  相似文献   

4.
In this Letter we report a new general method for calculating of surface tension isotherms in the presence of surfactants, based on a local density functional. We illustrate this method by deriving the interfacial tension isotherm for nonionic surfactants at an air-water or oil-water interface by using the self-consistent field theory of polymer brushes. We consider a particular case of local density functional to calculate explicitly how the interfacial tension and the surfactant adsorption depend on the surfactant bulk concentration. Experimental data for the surface tension and the surfactant adsorption isotherm for nonionic surfactants were interpreted with the help of the new isotherm. Very good agreement between the adsorption of n-dodecyl pentaoxyethylene glycol ether (C12E5) at an air-water interface, calculated from the surface tension isotherm and small-angle neutron-scattering is obtained.  相似文献   

5.
The surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by air oxidation to enhance its wettability as well as adsorption properties. Changes of PSAC after modification in texture, surface chemistry and wettability were studied by different techniques including N2 adsorption, X-ray photoelectron spectroscopy (XPS) and dynamic contact angle analyzer (DCA). Phenol adsorption characteristics in different solvents on PSAC were also investigated. When PSAC was modified under an atmosphere with 20 vol.% oxygen at 400 and 450 °C for 5 h, surface acidic groups increased from 0.11 to 1.22 and 1.60 meq/g, while basic groups decreased from 0.52 to 0.03 and 0.02 meq/g, respectively. After PSAC was modified, the increase of the oxygen-containing groups, especially carboxylic and phenolic ones, is responsible for the increasing of the surface acidity and the significant improvement of the wettability of PSAC. PSAC with a relatively high oxygen content provided a low adsorption capacity to phenol in aqueous solution, and the adsorption isotherms change from Langmuir class (L) to the S-shaped curve; while the solvent is changed into cyclohexane, all adsorption isotherms are type L, and the adsorption capacity to phenol increases with increasing oxygen-containing groups. Possible reasons, including the solvent effect, π-π dispersion and donor-acceptor interactions are discussed.  相似文献   

6.
7.
The effects of pore curvature and surface heterogeneity on the adsorption of water on a graphitic surface at 298 K were investigated using a Grand Canonical Monte Carlo (GCMC) simulation. Slit and cylindrical pores are used to study the curvature effects. To investigate the surface heterogeneity the functional group and the structural defect on the surface were specifically considered. The hydroxyl group (OH) is used as a model for the functional group and the water potential model proposed by Müller et al. is used to calculate the water interaction. For the homogeneous cylinder, the pore filling occurs at a pressure lower than the saturation pressure of the water model, while it is greater in the case of homogeneous slit pore. The size of hysteresis loop is more sensitive to the length of cylinder than that of the slit, and it increases with decreasing pore length. The isotherms of water in cylindrical pores are found to depend on the position and the concentration of the functional group. The pore filling pressure is lower with an increased number and/or with the position of the functional group. The structural defect shows significant effects on the adsorption isotherm in shifting to a lower pore filling pressure when it is located at a position away from the pore entrance. The adsorption of water on the heterogeneous surface was studied and it was found that the simulated isotherm can describe the behaviour of water on Graphitized Thermal Carbon Black (GTCB) satisfactorily. The water cluster grows mostly along the surface for the case of finite extent surface, while for the slit the pore grows in all directions but the preference is a direction perpendicular to the pore wall. Reasons for the direction of growth will be discussed.  相似文献   

8.
In this work we report a detailed X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) study of poly(ethylene glycol) PEG-like chemical gradients deposited via plasma enhanced chemical vapour deposition (PECVD) at two different load powers using diethylene glycol dimethyl ether (DG) as a monomer. Principal component analysis (PCA) was applied to the ToF-SIMS data both before and after protein adsorption on the plasma polymer thin films. Results of the PCA loadings indicated a higher content of hydrocarbon fragments across the higher load power gradient, which adsorbed higher amounts of proteins. Gradients deposited at a lower load power retained a higher degree of monomer like functionality as did the central region directly underneath the knife edge electrode. Analysis of the adsorption of serum proteins (human serum albumin and fetal bovine serum) was monitored across the gradient films and increased with decreasing ether (PEG-like) film chemistries. The effect of protein incubation time on the levels adsorbed fetal bovine serum on the plasma polymer films was critical, with significantly more protein adsorbing after 24 hour incubation times on both gradient films. The attachment of HeLa cells on the gradients appeared to be dictated not only by the surface chemistry, but also by the adsorption of serum proteins. XPS analysis revealed that at surface ether concentrations of less than 70% in the gradient films, significant increases in protein and cell attachment were observed.  相似文献   

9.
The uniform large micropores of hydrothermally stable Y zeolites are used widely to confine both polar and non-polar molecules. This paper compares the physisorption of water, methanol, cyclohexane, benzene and other adsorbates over various Y zeolites. These adsorbents are commercial products with reproducibly controllable physical and chemical characteristics. Results indicate that the type I isotherms typical for micropore adsorption can turn into type II or type III isotherms depending on either or both the hydrophobicity of the adsorbent and the polarity of the adsorbate. Methanol produced a rare type V isotherm not reported over zeolites before. Canonical and grand canonical Monte Carlo molecular simulations with Metropolis importance sampling reproduced the experimental isotherms and showed characteristic geometric patterns for molecules confined in Na-X, Na-Y, dealuminated Y, and ZSM5 structures. Adsorbate—adsorbate interactions seem to determine the micropore condensation of both polar and non-polar molecules. Exchanged ions and lattice defects play a secondary role in shaping the adsorption isotherms. The force field of hydrophobic Y appears to exert an as yet unexplored sieving effect on adsorbates having different dipole moments and partial charge distributions. This mechanism is apparently different from both the monolayer formation controlled adsorption on hydrophobic mesopores and macropores and the polarizability and small-pore opening controlled micropore confinement in hydrophobic ZSM5.  相似文献   

10.
The conversion of methanol to gasoline (MTG) range hydrocarbons on zeolite catalyst HZSM-5 has been studied extensively using solid-state NMR. We have studied the reaction under batch and flow conditions using an isolated flow variable-temperature (VT) MAS NMR probe. This probe was developed to study heterogeneous catalysis reactions in situ at temperatures greater than 300 degrees C with reactant flow. In the batch studies, when 13C-labeled methanol was adsorbed on zeolite HZSM-5, sealed, and heated to 250 degrees C, dimethyl ether was formed. Two-dimensional exchange NMR shows that dimethyl ether was in equilibrium with methanol at 250 degrees C. When 13C-methanol was flowed over HZSM-5 at temperatures > or = 200 degrees C, only dimethyl ether was observed. Between 160 degrees C and 200 degrees C, both methanol and dimethyl ether were observed. The flow results are significant in that they suggest that there is no equilibrium between methanol and dimethyl ether in the catalyst at high temperatures, and that surface methoxy groups do not exist on the catalyst at high temperatures.  相似文献   

11.
We report a thermal desorption study of the interaction of water, diethyl ether, ethanol, perfluorodiethyl ether, and 2,2,2-trifluoroethanol with zirconium oxide thin films epitaxially grown on Pt(111) single-crystal surfaces, and with the Pt(111) metal surface for comparison. We find that water and the hydrogenated ether interact chemically with the oxide surface through the O lone pair, whereas the fluorinated ether has only a van der Waals interaction. Ethanol and 2,2,2-trifluoroethanol are decomposed to some extent on zirconium oxide upon heating. Fluorination decreases the bond strength between the molecules and the oxide surface. A similar trend is observed on the Pt(111) surface with regard to relative adsorptivity and reactivity of the adsorbates examined. Although the Pt(111) surface provides weaker interaction with the molecules that interact via O lone pair orbitals (water, ether and alcohol) than the oxide surface, it decomposes diethyl ether as well as the alcohols.  相似文献   

12.
The Penning electron spectra of water, methanol, ethanol, isopropyl alcohol, tertiary butyl alcohol, dimethyl ether, ethylene oxide, diethyl ether, tetrahydrofuran and 1,4 dioxane, obtained using helium metastable atoms (21S, 23S), are compared to their respective photoelectron spectra at 584 Å. An analysis of the Penning electron band shape and the position of the peak maximum for the ground state ions suggest significant changes in the Franck—Condon factors in comparison with photoelectron spectra. This may be ascribed to modifications of the target potential energy curves. It is also observed that the relative populations of the ionic states differ appreciably for Penning ionization and photoionization.  相似文献   

13.
Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH3 (NH3-CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N2 adsorption, pHPZC (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH3-CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH3-CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pHPZC, surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature.  相似文献   

14.
The activated carbons (ACs) prepared from cattle manure compost (CMC) with various pore structure and surface chemistry were used to remove phenol and methylene blue (MB) from aqueous solutions. The adsorption equilibrium and kinetics of two organic contaminants onto the ACs were investigated and the schematic models for the adsorptive processes were proposed. The result shows that the removal of functional groups from ACs surface leads to decreasing both rate constants for phenol and MB adsorption. It also causes the decrement of MB adsorption capacity. However, the decrease of surface functional groups was found to result in the increase of phenol adsorption capacity. In our schematic model for adsorptive processes, the presence of acidic functional groups on the surface of carbon is assumed to act as channels for diffusion of adsorbate molecules onto small pores, therefore, promotes the adsorption rate of both phenol and MB. In phenol solution, water molecules firstly adsorb on surface oxygen groups by H-bonding and subsequently form water clusters, which cause partial blockage of the micropores, deduce electrons from the π-electron system of the carbon basal planes, hence, impede or prevent phenol adsorption. On the contrary, in MB solution, the oxygen groups prefer to combine with MB+ cations than water molecules, which lead to the increase of MB adsorption capacity.  相似文献   

15.
Studies were presented on production of highly dispersed magnesium silicate at a pilote scale. The process of silicate adsorbent production involved precipitation reaction using water glass (sodium metasilicate) solution and appropriate magnesium salt, preceded by an appropriate optimization stage. Samples of best physicochemical parameters were in addition modified (in order to introduce to silica surface of several functional groups) using the dry technique and various amounts of 3-isocyanatepropyltrimethoxysilane, 3-thiocyanatepropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane. The so prepared samples were subjected to a comprehensive physicochemical analysis. At the terminal stage of studies attempts were made to adsorb phenol from its aqueous solutions on the surface of unmodified and modified magnesium silicates. Particle size distributions were determined using the ZetaSizer Nano ZS apparatus. In order to define adsorptive properties of studied magnesium silicates isotherms of nitrogen adsorption/desorption on their surfaces were established. Efficiency of phenol adsorption was tested employing analysis of post-adsorption solution.  相似文献   

16.
聚乙二醇在Al2O3/水界面吸附行为的ESR研究   总被引:1,自引:0,他引:1  
采用电子自旋共振技术结合自旋标记研究了聚乙二醇在Al2O3/水界面的分子构型和运动行为.结果表明,聚乙二醇在Al2O3上的吸附等温线呈S型,吸附量随聚乙二醇分子量增加而减小,聚乙二醇在Al2O3表面是多点吸附,分子中的大部分链节平躺在Al2O3表面、少部分链节伸向溶液。  相似文献   

17.
The adsorption behaviors of fibrinogen on the self-assembled monolayers (SAMs) with different chemical properties were investigated using an atomic force microscopy (AFM). AFM images indicated that the adsorption amounts of fibrinogen molecules increased with an increase of the surface hydrophobicity. High-resolution AFM imaging revealed that the fibrinogen conformations adsorbed on the SAM surface changed with dependent on the surface chemistry. The adsorption models of fibrinogen molecules adsorbed on SAM surfaces with different chemical properties were proposed based on the high-resolution AFM images.  相似文献   

18.
In this work, porous graphite nanofibers (PGNFs) were manufactured as promising catalyst supporter by a physical activation method for direct methanol fuel cells, and Pt nanoparticles were loaded on the PGNFs in order to prepare electrode materials by a chemical reduction method. The pore structures of the Pt/PGNFs were analyzed by N2 adsorption isotherms at 77 K. Electrocatalytic activities of final products were investigated by voltammetry and conductivity measurements in a 1.0 M CH3OH/0.5 M H2SO4. As a result, electrocatalytic activities of Pt/PGNFs were increased in the presence of Pt particles on the PGNFs and with increasing the specific surface area of the carbons.  相似文献   

19.
M. Kaltchev  W. T. Tysoe   《Surface science》1999,430(1-3):29-36
The surface chemical activity of an alumina films grown on Mo(100) by oxidation of aluminum evaporated onto the surface and oxidized using water is examined using Auger, X-ray photoelectron and reflection/absorption infrared spectroscopies. The formation of alumina is confirmed using Auger and X-ray photoelectron spectroscopy from the positions and intensities of the aluminum features and using reflection-absorption infrared spectroscopy from the longitudinal optical modes of the Al–O bonds measured at 935 cm−1. The presence of surface hydroxyls is monitored by forming films using D2O which are evidenced by a feature at 2700 cm−1. Ammonia adsorption on a dehydroxylated surface yields a single peak at 1260 cm−1 due to ammonia adsorbed at a surface Lewis site where the principle symmetry axis of ammonia is oriented perpendicularly to the surface plane. Ammonia also appears to adsorb at Lewis sites on a hydroxylated surface with a slightly different adsorption geometry from that on a dehydroxylated surface. Finally, the chemistry of trimethyl aluminum adsorbed on the planar hydroxylated alumina surface is compared with that found on high-surface-area γ-alumina where the spectra and the chemistry found in both régimes is exactly identical except that the low-frequency methyl bending modes (at 769 and 718 cm−1) are not obscured on the thin film by the intense substrate whereas they are on the high-surface-area support.  相似文献   

20.
To exploit the advantages of nanoparticles for various applications, controlling the dispersion and agglomeration is of paramount importance. Agglomeration and dispersion behavior of titanium dioxide (TiO2) nanoparticles was investigated using electrokinetic and surface chemical properties. Nanoparticles are generally stabilized by the adsorption of a dispersant (polyelectrolyte) layer around the particle surface and in this connection ammonium salt of polymethacrylic acid (Darvan C) was used as dispersant to stabilize the suspension. The dosages of polyelectrolyte were optimized to get best dispersion stability by techniques namely particle charge detector (13.75 mg/g) and adsorption (14.57 mg/g). The surface charge of TiO2 particles changed significantly in presence of dispersant Darvan C and isoelectric point (iep) shifted significantly towards lower pH from 5.99 to 3.37. The shift in iep has been quantified in terms of free energy of interaction between the surface sites of TiO2 and the adsorbing dispersant Darvan C. Free energies of adsorption were calculated by electrokinetic data (−9.8 RT unit) and adsorption isotherms (−10.56 RT unit), which corroborated well. The adsorption isotherms are of typical Langmuir type and employed for calculation of free energy. The results indicated that adsorption occurs mainly through electrostatic interactions between the dispersant molecule and the TiO2 surface apart from hydrophobic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号