首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
通过发射光谱对大气压氦等离子体射流三个不同位置进行测量, 并采用光谱拟合获得氮气分子振转温度的方法, 研究了放电电压和气体流量以及离喷口的距离对射流的温度和化学活性的影响。发现大气压等离子体射流的气体温度和振动温度均随着放电电压增加而升高, 随着气体流量的增大而降低, 随着离喷口距离的增加而降低并逐步趋于稳定。通过对等离子体射流中振动温度的变化趋势并结合活性成分氧原子光谱强度的变化证实了等离子体射流的活性亦随着气体流量及离喷口距离的增大而降低, 随着放电电压增加而升高的结论。  相似文献   

2.
报道了石英管对大气压下空气中锥-板电极结构纳秒脉冲放电的影响实验研究.实验过程中发现将石英管纵向移动位置,放电会出现四种明显不同的形貌状态,对其机理进行了初步的探讨.利用发射光谱诊断了其转动和振动温度(分别为295和2200 K),表明该等离子体具有高度非平衡度.还进一步提出大气压下空气中产生类辉光放电的有效途径. 关键词: 纳秒脉冲放电 空气 纵向介质 非平衡等离子体  相似文献   

3.
在线化学分析需要实现开放环境下的样品取样和电离/激发。相比于激光切削或者激光诱导击穿,大气压微等离子体系统结构简单,更利于小型化。因而基于大气压微等离子体的在线化学分析技术引起行业的广泛关注。为了确定合适的微等离子体源进行样品的在线元素检测,需要进一步了解各放电模式及工作参数下微等离子体的自身特性以及取样效果。该工作主要研究了电弧及辉光放电微等离子体在大气压下对样品铁取样发射光谱的特性。实现了在开放环境下对高熔点金属样品的在线检测,并发现电弧放电微等离子体与光谱分析源联用具有更高的取样效率。高采样效率的电弧放电微等离子体源为实现金属及难解离样品的检测提供了一种新的方法。同时,相较于传统的取样装置,避免了复杂的样品制备、样品传输过程。实验装置采取简单的针对板放电结构,分别利用高压脉冲电源、直流电源获得电弧放电和辉光放电。实验的结果表明,在放电功率近似相等的条件下,电弧放电产生的微等离子体对样品铁取样的光学发射谱中,样品元素的特征谱线占据主导地位,同时伴随有空气中氮气的谱线,而且铁离子(FeⅡ)谱线的相对强度显著高于氮气分子谱线的相对强度。而在直流辉光放电中,样品铁原子(FeⅠ)谱线相对强度非常不明显。由此说明,电弧放电产生的微等离子体具有更高的采样效率。放电在样品表面留下的溅射坑也得出了相同的结论。增加辉光放电电流到25 mA,发现样品元素铁的谱线仍然没有明显的增强。同时,也研究了采样间距对两种采样模式的影响。实验结果表明,间距对两种模式的采样光谱没有显著的影响。采用主要成分为铝的合金铝箔进行了上述对比实验,得出相同的结论,即电弧放电微等离子体更适合作为光谱分析源来实现对金属样品的实时快速检测。  相似文献   

4.
为了研究微波液相放电等离子体的基本物理现象和放电特性,为微波液相放电技术奠定一定的理论基础,利用发射光谱仪对水中微波液相放电及放电中产生的活性粒子进行了检测,同时对微波液相放电光谱数据统计方法进行了研究。 利用发射光谱仪结合数控摄像机对微波液相放电过程中起始放电和稳定放电两个过程进行了同步检测拍摄。 实验结果发现:微波液相等离子体发射光谱强度波动较大,光谱强度可以用10个光谱数据点进行平均计算;放电的强度在一定程度上可以由等离子体区域面积所反映,尽管如此,等离子体区域面积和羟基自由基发射光谱强度的变化梯度并不一致,这主要是因为在放电过程中,放电强度不仅体现在等离子体区域面积,同时也与等离子体区域的亮度有关。  相似文献   

5.
研究了氮氧源大气压等离子体射流对表面大肠杆菌灭活作用,分析了氮氧源大气压等离子体射流的光谱性质。结果表明,在放电电压为6.8kV,气体流速为4L?min?1,处理3min时,氮氧比为1:4的大气压等离子体射流对大肠杆菌的灭活率达到98.4%,接近氧气源大气压等离子体射流灭菌效果。通过大气压等离子体射流发射光谱(OES)分析了氮氧源大气压等离子体射流中活性物质,进而解释大肠杆菌微生物灭活机理,认为NO?γ、OI、?OH等活性物质在表面大肠杆菌灭活过程中起到了重要作用。这将为大气压氮氧等离子体射流在环境卫生、微生物灭活等方面的应用研究提供实验基础和技术支持。  相似文献   

6.
研究了氮氧源大气压等离子体射流对表面大肠杆菌灭活作用,分析了氮氧源大气压等离子体射流的光谱性质.结果表明,在放电电压为6.8kV,气体流速为4L?min-1,处理3min时,氮氧比为1:4的大气压等离子体射流对大肠杆菌的灭活率达到98.4%,接近氧气源大气压等离子体射流灭菌效果.通过大气压等离子体射流发射光谱(OES)分析了氮氧源大气压等离子体射流中活性物质,进而解释大肠杆菌微生物灭活机理,认为NO-γ、OI、·OH等活性物质在表面大肠杆菌灭活过程中起到了重要作用.这将为大气压氮氧等离子体射流在环境卫生、微生物灭活等方面的应用研究提供实验基础和技术支持.  相似文献   

7.
在石英毛细管内利用两个边缘锋利的中空针型电极间的放电形成了63 cm长的大气压弧光等离子体.通过记录放电图片和测量电流-电压特征波形及伏安特性曲线的方法对管内等离子体从反常辉光状态过渡至超长弧光状态的过程做了细致的研究,发现管内等离子体在弧光状态下的电子密度不低于1014 cm-3.另外,还进一步考察了两电极的间距和电源工作频率对放电伏安特性的影响以及通过发射光谱法测得的等离子体气体温度随外加电压的变化规律.当活性气体(氧气)按一定比例混合到氩等离子体中时,通过 关键词: 大气压等离子体 反常辉光放电 弧光放电 发射光谱  相似文献   

8.
潘宁型放电等离子体的发射光谱分析   总被引:4,自引:0,他引:4  
李慧玉  施芸城  冯贤平  杨平 《物理实验》2005,25(7):15-17,24
重新设计了潘宁型等离子体源实验装置,在低气压下得到了稳定的等离子体.分析了等离子体的发射光谱,得到了等离子体光谱强度与放电气压和放电电压之间的关系,并且对氮气的发射光谱进行了分析.  相似文献   

9.
李雪辰  常媛媛  刘润甫  赵欢欢  狄聪 《物理学报》2013,62(16):165205-165205
利用三电极介质阻挡放电装置, 在主放电区产生了较大体积的大气压空气均匀放电. 利用光学与电学方法, 对主放电特性进行了研究, 发现随驱动功率的不同, 主放电存在等离子体羽和等离子体柱两种模式, 等离子体羽的击穿电压随外加电压峰值的增加而减小. 利用光电倍增管对两种放电模式进行了空间分辨测量, 发现等离子体羽是以发光光层的形式传播, 而等离子体柱是连续放电. 通过采集两种放电的发射光谱, 对其振动温度和转动温度进行了测量. 发现两种放电模式的振转温度均随着Up的增大而降低. 关键词: 介质阻挡放电 等离子体羽 等离子体柱 发射光谱  相似文献   

10.
大气压等离子体针产生空气均匀放电特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李雪辰  袁宁  贾鹏英  常媛媛  嵇亚飞 《物理学报》2011,60(12):125204-125204
大气压空气放电由于脱离了真空装置,易于实现流水线生产,因而在工业上具有广泛的应用. 采用等离子体针装置在空气中产生了稳定的大气压均匀放电. 利用光谱法对等离子体的相关参数进行了空间分辨率测量,并通过光学方法对放电机理进行了研究. 结果表明,等离子体针产生的放电存在电晕放电和等离子体羽放电两种模式. 在稳定的等离子体羽放电模式中,发光分为强光区和弱光区. 弱光区放电的发展速度远大于强光区的发展速度,电子能量和电子密度均是弱光区比强光区大. 对均匀放电的气体温度和振动温度的研究表明,强光区放电遵循汤生击穿机理而弱光区为流光放电. 这些结果对大气压空气放电的工业应用具有重要意义. 关键词: 大气压均匀放电 等离子体针 发射光谱 放电机理  相似文献   

11.
使用介质阻挡放电光谱诊断装置,对常压介质阻挡放电在材料改性过程中的等离子体发射光谱进行测量,记录和比较了空气、氦气和氩气常压介质阻挡放电等离子体发射光谱,并运用氩元素谱线的相对强度来诊断电子温度等物理参量,以达到对材料表面改性过程的实时监控。工作的结果对常压介质阻挡放电及其在材料改性上的应用具有重要的意义  相似文献   

12.
常压介质阻挡放电等离子体发射光谱的检测分析   总被引:1,自引:1,他引:0  
以常压介质阻挡放电等离子体作为研究对象,在常温常压条件下使用介质阻挡放电光谱诊断装置,得到N2第二正系跃迁和Ar原子发射谱线。通过对放电光谱的检测分析,可以察知常压介质阻挡放电等离子体的特性,并可运用同一元素谱线的相对强度来诊断电子激发温度等物理参量,以达到对材料表面改性过程的实时监控,工作的结果对常压介质阻挡放电及其在材料改性的应用中具有重要的意义。  相似文献   

13.
采用发射光谱方法对大气压氩气介质阻挡放电(DBD)系统中的电子密度进行了诊断。通过考虑放电等离子体中的各种加宽机制, 采用自编的非对称卷积程序对氩原子发射谱线的线型进行分析拟合, 再通过反卷积的方法将各种加宽机制分离开来, 最终将Stark展宽分离出来进行大气压氩气介质阻挡放电电子密度的计算。诊断结果表明, 在大气压氩气介质阻挡放电中当有三个放电丝存在, 电子温度为10000 K时, 电子密度约为4.06×1021 m-3, 诊断结果和模拟结果符合得很好。此方法不仅可以应用在大气压介质阻挡放电中, 还可以用于其他含有非氢气体的大气压等离子体电子密度的测量。  相似文献   

14.
In this paper, an atmospheric pressure dual‐frequency (50 kHz/33 MHz) micro‐plasma jet was used to deposit organosilicon film. The discharge generated in atmospheric environment. Plasma composition was characterized by optical emission spectroscopy. With introduction of tetraethyl orthosilicate, we observed various spectra, for example Si(251.6 nm), OH(308.9 nm), C(247.8 nm), O(777.5 nm). Abundant reactive radical species which are benefit to film deposition were generated in plasma. The deposited film was characterized by scanning electron microscopy, X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The film is mostly composed of Si and O. The film has Si‐O‐Si backbone with a small number of organic component (‐CHx). (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
大气压放电等离子体柱在飞行器隐身技术方面具有非常重要的应用。利用同轴介质阻挡放电水电极装置,大气压下在氩气中放电产生了长达65 cm的均匀等离子体柱。利用光学方法研究了等离子体柱的放电机理为发光子弹传播。通过测量发现该子弹的传播速度约为0.6×105 m·s-1。采用发射光谱法测量了等离子体柱的发射光谱中谱线强度比随外加电压和驱动频率的变化关系,其相对强度之比表征了电子平均能量。结果表明电子平均能量随外加电压和驱动频率的增加而增加。本工作对大气压下气体放电的工业应用具有一定的意义,在军事飞行器隐身方面具有广阔的应用前景。  相似文献   

16.
常压射流等离子体发射光谱研究   总被引:2,自引:0,他引:2  
使用改进介质阻挡放电装置生成常压射流等离子体,采用光纤光栅光谱仪在300~1 000 nm范围记录了不同放电电压的氩气发射光谱,并比较了空气和氩气常压介质阻挡放电等离子体发射光谱,分析发现氩气发射光谱中的谱线都是氩原子的发射谱线,表明常压射流装置产生的等离子体全部为氩等离子体,而无其他空气成分参与放电。为测量电子激发温度,选用相距较近的763.51和772.42 nm两条光谱线对电子温度进行分析,结果表明电子激发温度的范围在0.1~0.3 eV,而且它还随着放电电压的增加而增加。初步使用“红外测温仪”测量被处理材料表面温度,结果发现材料表面的温度也随着放电电压的增加而增加,范围在50~100 ℃,材料表面温度的变化趋势可以近似表征等离子体宏观温度变化趋势。通过分析常压射流等离子体的温度特性,探讨了常压射流等离子体温度对材料改性研究的意义。  相似文献   

17.
周倩  于淼  张秀玲 《光散射学报》2013,25(2):209-213
采用自行设计的介质阻挡放电反应器,以氩气和离子液体为放电介质,实现大气压下稳定的气(等离子体)-液(离子液体)等离子体放电,并运用光谱法在线诊断氩等离子体光谱。考察了不同咪唑基离子液体以及放电参数对大气压氩气介质阻挡放电光谱的影响。结果表明,离子液体的引入降低了氩气放电光谱的强度,谱峰强度与离子液体阳离子咪唑环上的碳链长度有关,且随碳链长度增加,谱峰强度降低;同时阴离子结构对称性低的离子液体,谱峰强度较低。加入离子液体后氩谱随放电电压及放电频率变化均呈现峰值变化。  相似文献   

18.
大气压氩直流微放电光谱研究   总被引:1,自引:1,他引:0  
微空心阴极放电或微放电是一种能够实现高气压下放电的有效方法。利用不锈钢空心针作阴极,不锈钢网作阳极,进行了大气压氩直流微放电实验研究。测量了大气压氩微放电光谱,发现氩气的发 射谱线主要集中在690~860 nm范围,且全部为氩原子4p—4s的跃迁。实验研究了不同放电电流、气体压强、气体流量与谱线强度之间的关系,发现谱线强度随放电电流、气体流量增加均增加,而谱线强 度随压强变化呈现不同特征:谱线强度随压强的增加先增加后降低,在13.3 kPa时强度最大。此外,选用跃迁波长为763.51和772.42 nm的两条光谱线,利用发射谱线强度比值法测量了氩气微放电等离子 体的电子激发温度。结果显示,其电子激发温度处于2 000~2 800 K之间,且随放电电流的增加而增加,随气体压强和气体流量的增加而降低。  相似文献   

19.
为了更加深入地了解氩气/空气等离子体射流内的电子输运过程及化学反应过程,通过针-环式介质阻挡等离子体发生器在放电频率10 kHz,一个大气压条件下对氩气/空气混合气进行电离并产生了稳定的等离子体射流。通过发射光谱法对不同峰值电压下氩气/空气等离子体射流的活性粒子种类、电子激发温度及振动温度进行了诊断。结果表明,射流中的主要活性粒子为N2的第二正带系、Ar Ⅰ原子以及少量的氧原子,其中N2的第二正带系的相对光谱强度最强、最清晰,在本试验的发射光谱中没有发现N+2的第一负带系谱线,这说明在氩气/空气等离子体射流中几乎没有电子能量高于18.76 eV的自由电子。利用Ar Ⅰ原子激发能差较大的5条谱线做最小二乘线性拟合对等离子体射流的电子激发温度进行了计算,得到大气压氩气/空气等离子体射流的电子激发温度在7 000~11 000 K之间。随峰值电压的增大,电子激发温度表现出先增大后减小的变化趋势,这说明电子激发温度并不总是随峰值电压的增长单调变化的。通过N2的第二正带系对等离子体振动温度进行了诊断,发现大气压氩气/空气等离子体射流振动温度在3 000~4 500 K之间,其随峰值电压的增大而减小,这意味着虽然峰值电压的提高可有效提高自由电子的动能,但当电子动能较大时自由电子与氮分子之间的相互作用时间将会缩短,进而二者之间的碰撞能量转移截面将会减小,从而导致等离子体振动温度的降低。  相似文献   

20.
使用介质阻挡放电光谱诊断装置,分析了常压等离子体放电电流与放电间隙的变化关系,提出了“放电临界间隙”的概念,记录和比较了空气和氩气常压介质阻挡放电等离子体发射光谱,并运用同一元素谱线的相对强度来诊断电子温度等物理参量,以达到对材料表面改性过程的实时监控。工作的结果对常压介质阻挡放电及其在材料改性中的应用具有重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号