首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用三维荧光光谱(3D-EEMs)和平行因子分析(PARAFAC)的方法研究了土壤渗滤系统处理模拟高氨氮废水中溶解性有机物(DOM)的垂直分布特征。试验在一个中试规模的土壤渗滤系统中进行,反应器自上而下每隔30 cm设置一个采样口,采集的样品通过PARAFAC识别出系统不同点位的DOM具有四个荧光组分,包括两个类腐殖质物质(C1,C2)、2个类蛋白物质(C3,C4)。相关性分析显示,四种荧光组分与多数理化指标呈现极显著性正相关关系,可以用荧光组分浓度间接表征系统对氮、磷等营养元素的去除效果。对荧光组分浓度得分Fmax分析得出,土壤渗滤系统中类酪氨酸最易降解,其次为类富里酸、类胡敏酸类物质,最难以降解的为类蛋白物质。  相似文献   

2.
平行因子法分解成分分析在三维荧光光谱数据中的实现   总被引:2,自引:0,他引:2  
系统分析了PARAFAC法解析立方阵数据的实现过程。以建立PARAFAC模型对湖泊水样三维荧光光谱数据进行荧光物质成分分解为例,通过对核心阵元素分布、核一致函数、模型谱图与原始谱图拟合程度以及拟分解成分物理意义的分析,确定PARAFAC法分解样品荧光物质成分的合理成分数,实现PARAFAC法对荧光物质成分的合理分解与识别。  相似文献   

3.
平行因子分析法在太湖水体三维荧光峰比值分析中的应用   总被引:5,自引:0,他引:5  
以太湖水样三维荧光光谱数据为例,提出在采用平行因子分析法(PARAFAC)处理后的荧光数据中提取荧光峰强度计算荧光峰比值进行水环境分析评价的方法,较直接在水样原始荧光谱图中获取的荧光峰强度更加准确客观。天然水体中各水样间由于受荧光团复杂多样性等因素的影响,某类荧光物质荧光峰的激发发射波长位置并不是固定不变的,就同一水样而言各类荧光峰之间的相互重叠干扰也将影响到荧光峰强度和位置的准确判断。而在PARAFAC模型各因子中提取相应荧光峰值可以保证各水样间同类荧光物质荧光峰在同一位置又有效减弱同一水样中各类荧光物质荧光峰之间的相互干扰,更加高效准确的利用荧光峰比值进行水环境分析。区域差异性分析时水样因子得分比值的区域变化与原始荧光峰比值变化趋势是一致的。  相似文献   

4.
獐子岛附近海域溶解有机物的荧光特征   总被引:2,自引:0,他引:2  
利用平行因子分析(PARAFAC)模型对三维荧光光谱(EEMs)进行解析,研究了獐子岛附近海域不同季节荧光溶解有机物(DOM)荧光的组成特点及分布变化。调查水域在不同季节的DOM荧光组成基本一致,包含类腐殖质荧光组分C1(265/440nm),C2(410~450/520~550nm)和类蛋白荧光组分C3(230,280/330nm),且三者有很好的相关性,表明它们有着相同的来源或彼此间存在某种关系。各组分在不同季节不同水层的分布有在獐子岛周围海域荧光强度相对较大的共同点。通过对各组分与叶绿素a和盐度变化的关系研究发现,调查海区OM受现场浮游植物和人类生产活动的共同作用。分析结果有效的证明了EEMs与PARAFAC相结合对DOM荧光进行分析鉴别的可行性。  相似文献   

5.
环滇池土壤溶解性有机质(DOM)的光谱特征及来源分析   总被引:4,自引:0,他引:4  
利用紫外-可见光谱和三维荧光光谱技术,结合平行因子分析法,对环滇池地区土壤中溶解性有机质(dissolved organic matters, DOM)的结构特征和来源进行了研究。结果显示,所有样品的紫外-可见光谱曲线均呈现出相似的特征,吸收系数随着波长的增加而降低,并在250~280 nm波段存在一个明显的肩状吸收峰。柴河水库和滇池东部地区土壤DOM的芳香性(A250/A365)、分子量(SR)、腐殖化程度(SUVA254)和所含疏水组分(SUVA260)均高于其他三个区域。三维荧光光谱显示,环滇池土壤DOM中含有紫外可见光区类富里酸峰、可见光区类富里酸峰和两种类腐殖酸峰。荧光指数(fluorescence index, FI)和自生源指标(autochthonous index, BIX)均表明该地区土壤DOM有着典型的陆源特征,且类蛋白成分生成量较少,生物可利用性较低。平行因子分析法(PARAFAC)将土壤DOM分成四个荧光组分,四个组分之间有着非常显著的相关性(p<0.01),表示具有同源性。此外,类富里酸荧光组分对DOM的贡献率最大,说明土壤DOM中富里酸物质的含量相对较多。  相似文献   

6.
养殖粪水中物质的组成变化决定其潜在的环境效应,溶解性有机质(DOM)是养殖粪水的重要组成部分。研究对总固体浓度(TS)分别为4%和8%的猪、奶牛粪水进行批次中温厌氧发酵试验,分析了猪粪和奶牛粪沼液中DOM的含量变化,并结合三维荧光光谱(3DEEM)和平行因子分析法(PARAFAC),解析沼液DOM的荧光光谱特性及组分变化特征。结果表明,中温厌氧发酵结束后,沼液中DOM含量均极显著(p<0.001)降低。沼液DOM主要包含类酪氨酸、类富里酸、类色氨酸和类胡敏酸4种荧光组分,其中类胡敏酸的相对含量均显著(p<0.05)增加,但类富里酸的相对含量仅在TS为8%的处理中增加,而在TS为4%的处理中降低。沼液DOM的腐殖化指数均极显著(p<0.01)增加,但猪粪沼液DOM的腐殖化程度明显高于奶牛粪沼液。研究结果为畜禽粪便沼液农田利用的潜在环境效应评价提供理论支撑。  相似文献   

7.
滇池水体有色溶解性有机质(CDOM)三维荧光光谱特征   总被引:14,自引:0,他引:14  
利用平行因子分析法(PARAFAC)解析了滇池水样的三维荧光光谱,揭示了其有色溶解性有机质(CDOM)组分的分布特征,并利用主成分分析法对影响滇池水体的CDOM的主控因素以及其相对贡献进行了研究。结果表明,滇池水体CDOM可分为四个组分,分别为类腐殖质荧光组分C1(240,415),C3(265,525),C4(255,505)和类蛋白荧光组分C2(230/280,330);空间分布呈现北部和入湖河口处等污染较重的区域CDOM组分荧光强度最高,而其区域较低的趋势,且四个组分呈现正相关(p0.01),说明其来源相同。主成分分析表明,滇池水体CDOM四个组分均来源于陆源有机质(贡献率74.18%);同时,DTN,DTP,DON受四DOM组分的控制比较明显,显示出强烈的陆源性质。滇池水体CDOM组分可以与溶解性营养盐较好的多元非线性拟合,进而通过CDOM的三维荧光光谱研究,可以在一定程度上指示滇池水体富营养化水平。  相似文献   

8.
利用三维荧光技术进行水质监测对干旱区绿洲河流水质的有效管理具有重要的意义。以三维荧光技术为手段,以艾比湖流域地表水为研究对象,结合平行因子(PARAFAC)法和自组织特征映射神经网络(SOM)方法,探讨了艾比湖流域地表水溶解性有机质的三维荧光特征及其与地表水水质指标之间的关系。通过PARAFAC法,有效提取了艾比湖流域地表水样中的4种荧光组分,C1荧光峰对应物质为紫外区类富里酸,C2荧光峰对应物质为类富里酸,C3包括2个峰C3(T1)和C3(T2),其中C3(T1)荧光峰对应物质为类蛋白,C3(T2)荧光峰对应物质为类腐殖酸,C4荧光峰对应物质为类腐殖质。经SOM训练,在不同聚类层中探讨水质参数分布情况,水质状况由差到好的顺序依次为博河上游、精河绿洲、乌苏周边农田、艾比湖周边。在艾比湖流域丰水期,酸碱度(pH)、电导率(EC)、溶解氧(DO)、化学需氧量(COD)和五日生化需氧量(BOD5)与水样的三维荧光峰具有较为显著的相关性,而总磷(TP)、总氮(TN)及氨氮(NH+3-N)与各荧光峰相关性较弱。分别建立pH、EC、DO、COD及BOD5与各荧光组分间的多元线性回归方程,求得相关系数R分别为0.579、0.632、0.502、0.762和0.785,可以在一定程度上利用各荧光组分模拟水质参数的变化情况。在利用PARAFAC探讨地表水荧光特征的基础上,SOM网络作为一种有效的水体荧光光谱分析工具,可为干旱区水质监测和河流水质污染治理提供科学依据。  相似文献   

9.
pH值对滇池水体溶解性有机质(DOM)光降解作用的影响   总被引:1,自引:0,他引:1  
运用紫外光谱、三维荧光光谱技术结合平行因子分析法(PARAFAC)探讨了pH值对滇池水体环境中溶解性有机质(DOM)光化学降解特性(紫外光谱特征、荧光组分及其荧光强度)的影响。掌握了不同pH值条件下DOM光化学降解特性及其差异性,可为DOM的生物地球化学循环基础数据提供有利支撑,同时对富营养化湖泊水质改善和有效控制具有重要的启示作用。结果表明,在光降解发生过程中(0~30 d),DOM被识别出具有三个主要荧光组分,分别为长波类富里酸组分C1(325,425 nm),类蛋白类组分C2(295, 390 nm)和具有高芳香度特性的类腐殖质组分C3(260/350,360/450 nm);pH值的变化对DOM光降解过程中的紫外光谱和三维荧光光谱特征均产生重要影响;当pH值从4.0增加到9.0,DOM的紫外吸光系数随pH值增大而增大,总荧光强度随pH值增加而逐渐下降;类蛋白组分C2从降解的第8天开始,其荧光强度也表现出随pH值增加逐渐下降的趋势,这表明高pH值能够促进水体DOM的光降解作用。鉴于pH值能够对DOM光降解过程及其紫外光谱和三维荧光光谱特征产生重要影响,研究认为,对比不同来源DOM(自然水体、DOM提取物等)的紫外光谱、三维荧光光谱和平行因子分析结果时,应监测并报告DOM溶液的pH值,pH值应尽量保持一致,以保证结果的可比性。  相似文献   

10.
研究了实验室培养的小型水母弗洲指突水母(Blackfordia virginica)代谢过程中所释放的溶解有机物(DOM)及其吸收和荧光光谱特征的变化。与对照组海水相比,充分摄食后的水母在24h的代谢过程中向水体释放大量的溶解有机碳和总溶解态氮,有色溶解有机物的吸收系数a280也有显著增加。光谱斜率比值(SR)的增大和腐殖化指数(HIX)的降低,表明水母代谢产生的主要是腐殖化程度较弱的低分子量DOM。利用平行因子分析(PARAFAC)模型对三维荧光光谱进行解谱,识别出3个类腐殖质(C1-C3)和1个类蛋白质(C4)组分。发射波长在400nm以下的"海源"类腐殖质组分C2(<250,295/386nm)及类蛋白质组分C4(275/334nm)在代谢过程中有明显增加,表明它们是水母代谢释放的主要荧光物质;而发射波长在400nm以上的组分则变化不大。据此可将发射波长小于400nm与大于400nm的荧光组分强度和之间的比值,构建为DOM的浮游动物来源指标(ZIX),用于识别和示踪水环境中浮游动物代谢活动释放和产生的DOM。  相似文献   

11.
温室黄瓜病虫害的叶绿素荧光光谱分析   总被引:2,自引:0,他引:2  
基于叶绿素荧光光谱分析技术,从光谱形态角度出发确定了波长685 nm作为健康与病虫害叶片分析的第一特征点,采用简单波段自相关选择与主成分分析方法相结合实现对光谱的降维处理,并在保持光谱信息达到99.999%的前提下将主成分因子个数由10降为5。对比分析了偏最小二乘回归、BP神经网络和最小二乘支持向量机回归三种建模方法,以真实值与模型预测值的相关系数作为评价标准,最终确定最小二乘支持向量机为温室黄瓜病虫害叶绿素荧光光谱分析的一种较为适宜的建模方法。  相似文献   

12.
基于温度变量的四维荧光光谱的石油类污染物测定   总被引:1,自引:0,他引:1  
三维荧光光谱结合多元校正分析对石油类污染物复杂多组分体系测定方法多谱图混叠,且易受到空白荧光和干扰物荧光影响降低了测定准确性。提出在三维荧光光谱中增加一维温度信息构造激发波长-发射波长-温度-样品(EEM-temperature data array)的四维荧光光谱数据阵列,应用四线性成分模型建立高维荧光光谱定性定量分析的方法。实验证明在15~25 ℃温度范围内,矿物油荧光光谱轮廓形状不随温度变化,而其强度随温度线性变化,满足四线性要求,这为构建四维荧光光谱发展高维数据的三阶校正提取更丰富的有效信息提供了可能。三阶校正不仅可以在干扰物共存的情况下对感兴趣组份进行定量测定,即具有“二阶优势”,还具有更高的选择性和灵敏性,可以对高共线性和背景干扰的重叠光谱表现更好的解析能力,即“三阶优势”。对0#柴油、97#汽油和机油为混合油待测组分,腐殖酸为水体干扰组分组成的复杂体系污染油样品为进行实验,得到的三维荧光光谱利用平行因子(PARAFAC)算法和交替惩罚三线性分解(APTLD)算法进行二阶校正分析,将三维荧光光谱在温度方向上堆叠构成增加温度维度的四维荧光光谱数阵,并将其利用四维平行因子算法(4-PARAFAC)和交替惩罚四线性分解(APQLD)算法进行三阶校正分析,比较,0#柴油、97#汽油和机油的预测结果表明增加了影响荧光光谱的温度因素构造的四维荧光光谱提高了有效信息提取能力,四维荧光光谱结合高阶校正算法能提高油种光谱识别和浓度精确检测,较传统的三维荧光光谱分析提高了回收率(recovery rate)和预测均方根误差(root mean square error of prediction,RMSEP),有利于石油类污染物的有效,准确,实时,绿色环保检测。同时指出了4-PARAFAC和APQLD算法各自的特点及其不同适用环境,为油类污染物检测具体情况提供算法选择依据。引入温度参量的四维荧光光谱结合三阶校正算法的检测技术较三维荧光光谱技术,在组分光谱定性分辨和浓度定量检测方面能对复杂体系油类污染物实现快速有效,绿色无污染地检测,实现“数学分离”更有效代替“化学分离”。  相似文献   

13.
如何快速获取干旱区地表水盐分含量是干旱区绿洲地表水有效管理的关键问题。研究以艾比湖流域为研究区,三维荧光光谱技术为诊断手段,利用荧光激发发射矩阵(EEM)结合平行因子分析(PARAFAC)法,提取艾比湖流域地表水水体荧光组分,构建干旱区地表水三维荧光光谱指数。通过线性回归方法,建立基于三维荧光光谱技术的地表水盐分含量的诊断模型。结果表明: (1)艾比湖流域地表水溶解性有机质含有四种荧光组分即: 微生物腐殖质(C1),腐殖酸等有机物质(C2,C4),蛋白质类有机物质(C3)。(2)通过三维荧光指数分析发现,流域地表水有机污染类型为“陆源型”,受人类干扰比较严重,水体有机污染差异较大,且三维荧光指数、荧光组分分别与地表水水体含盐量呈显著相关性,W2,W4,W7,F355,HIX和BIX与水体盐分含量的关系显著,0.516<r<0.915,其中HIX与水体盐分含量呈明显负相关,相关系数r为-0.57。(3)利用三维荧光指数和荧光组分建立水体盐分估算模型,模型拟合系数大于0.7,模型验证精度符合统计学要求,估算模型的RPD值均大于1.4,模型估算能力较强。因此,基于三维荧光光谱技术实现艾比湖流域地表水水体含盐量诊断研究是可行的。该研究不仅探讨了干旱区艾比湖流域地表水三维荧光的特点,而且将为三维荧光应用于干旱中亚地区地表水有机污染监测提供一定的科学依据。  相似文献   

14.
利用FS920荧光光谱仪测量市售的八种植物油(大豆油、玉米油、橄榄油、稻米油、花生油、核桃油、葵花籽油和芝麻油)共22个样品的荧光光谱,并对其数据矩阵(EEMs)进行平行因子分析,结合荧光谱分析的直观物质表征和平行因子法对灰色体系的组分识别优势,实现了植物油的种类区分与鉴别。综合分析植物油在特定范围内(激发波长为250~550 nm,发射波长为260~750 nm)的三维荧光光谱和等高线光谱图,给出了各植物油峰位、峰数和峰强等特征信息,确定了植物油各荧光谱峰相应的荧光物质(不饱和脂肪酸类、维生素E及其衍生物、叶绿素及类胡萝卜素);将平行因子模型应用于植物油光谱数据矩阵的分析,确定了平行因子分析模型的因子数及各因子的物质基础(维生素E及其衍生物、亚油酸和亚麻酸、脂肪酸氧化产物、植物油氧化产物)。建立了植物油的4因子激发-发射光谱轮廓图和样品因子投影得分图。通过对植物油荧光光谱的图谱特征和其数据阵平行因子模型的分析,证实荧光光谱技术和平行因子分析法对植物油进行分析和种类鉴别的有效性。  相似文献   

15.
利用同步荧光光谱快速鉴别潲水油   总被引:2,自引:0,他引:2  
为快速鉴别潲水油,采用三维同步荧光光谱结合平行因子法解析潲水油的特征波长差(Δλ),并利用支持向量机建立潲水油鉴别模型。结果表明,潲水油的特征Δλ为60 nm;特征Δλ下的样品原始同步荧光光谱经过主成分分析提取5个主成分,以径向基函数(RBF)为核函数,利用网格搜索和6-fold交叉验证优化建模参数,得到惩罚因子C=512、核参数g=0.5,该条件下建立的模型对训练集和预测集的判别率均达到100%。采用同步荧光光谱可以快速、准确地鉴别潲水油。  相似文献   

16.
将赤潮藻生长过程中产生的荧光溶解有机物(fluorescent dissolved organic matter,FDOM)的三维荧光光谱与主成分分析相结合,尝试建立了我国沿海10种常见赤潮藻的识别测定技术.用主成分分析提取三维荧光光谱第一主成分载荷谱作为识别特征谱,建立了浮游植物荧光特征谱库,在此基础上利用Bayes...  相似文献   

17.
针对油类污染物成分复杂,光谱重叠难以识别的问题,提出采用三维荧光光谱结合组合算法对油类污染物进行了定性和定量分析。荧光光谱中存在的瑞利散射对三维荧光光谱检测有较大影响,提出了缺损数据修复-主成分分析(MDR-PCA)方法对矿物油三维荧光光谱的瑞利散射进行处理,原理是单个荧光光谱激发发射矩阵符合双线性,可用主成分分析(PCA)法来解析。MDR-PCA法首先将荧光数据中的散射干扰数据全部扣除,之后利用主成分分析(PCA)迭代过程对扣除数据进行重构修复后补全数据。该方法在消除散射干扰的同时充分利用了荧光物质光谱矩阵中的有效信息。利用不同浓度的矿物油的激发-发射荧光光谱构建了三维数据。样品数据来源于柴油、汽油和煤油三种溶质的四氯化碳溶液。常用于三维荧光光谱数据分析的三线性分解算法有平行因子分析(PARAFAC)、交替三线性分解(ATLD)和自加权交替三线性分解算法(SWATLD)等。PARAFAC基于严格意义上的最小二乘原则,具有抗噪声强、模型稳定、微小预期误差等优点,可以实现三维数据阵列的最佳拟合,但该算法收敛速度较慢,对组分数敏感。ATLD算法通过提取对角主元和切尾奇异值求解广义逆,极大提高了收敛速度并降低了对组分数的敏感度,从而实现三线性分解。然而,取对角元时易使ATLD方法对噪声敏感。SWATLD算法既继承了对组分数不敏感、收敛速度快等优点,又降低了噪声水平的影响。但是在抗共线程度方面,SWATLD算法在抵抗共线性程度方面的能力较ATLD略有降低。基于此,论文根据三线性分解算法迭代过程中损失函数的变化,对迭代过程进行划分,提出了三线性迭代方法的组合算法(algorithm combination methodology, ACM)—将ATLD, SWATLD与PARAFAC组合在一起,充分发挥各算法的优点,实现二阶校正算法的优势互补。采用ACM算法对两组分及三组分矿物油样品的三维荧光光谱数据进行解析,并对三种矿物油的回收率进行了计算。柴油的回收率为97.08%,汽油的回收率为97.34%,煤油的回收率为97.25%。解析光谱和回收率表明,ACM算法能够实现油类污染物的种类识别及浓度测量。  相似文献   

18.
石油类混合油液的组分检测是三维荧光光谱领域重要的研究内容,由于实际获得的混合油液三维荧光光谱数据存在不同组分光谱重叠严重、数据三线性较差等问题,通过平行因子算法解析时,会出现解析谱与标准谱差异过大或者不能正确判断油种的情况。在验证三维荧光偏导数光谱应用平行因子算法具有可行性的基础上,将三维荧光偏导数光谱与平行因子算法结合,能够提高平行因子算法得到的混合油解析谱与标准谱的拟合程度,实现石油类混合油液组分的准确检测。首先,以十二烷基硫酸钠(SDS)溶液作为溶剂,配制航空煤油、润滑油不同浓度的纯油溶液各15份,将航空煤油、润滑油按照不同浓度比配制9份混合油溶液;并利用FS920荧光光谱仪得到39份三维荧光光谱数据。然后,对三维荧光光谱数据进行预处理:通过扣除空白法去除拉曼散射,并将瑞利散射区域扣除,再利用分段三次hermite插值方法对扣除区域进行插值;利用小波变换阈值去噪法去除光谱数据中的高频噪声,得到预处理完成后的三维荧光光谱数据。最后,利用Savitzky-Golay拟合求导方法求三维荧光光谱的一阶偏导数光谱,并利用平行因子算法对三维荧光光谱和三维荧光偏导数光谱进行解析。将解析谱与纯油标准谱进行比较,实验结果表明:利用平行因子算法对混合油液的三维荧光光谱进行解析时,得到的润滑油解析结果较好,但航空煤油的解析结果存在较大问题。而三维荧光偏导数光谱经平行因子算法解析后,在保证润滑油解析结果的同时,显著提高了航空煤油的解析结果:航空煤油解析谱与标准谱之间的相关系数提升了12.0%(发射光谱)、6.7%(激发光谱),均方根误差减少了70.4%(发射光谱)、20.6%(激发光谱)。在三维荧光光谱数据三线性较差的情况下,三维荧光偏导数光谱结合平行因子分析方法优于三维荧光光谱结合平行因子分析方法,实现了对混合油液组分准确检测的目的。  相似文献   

19.
提出了一种基于小波分解和因子模型分析白酒荧光光谱,对白酒香型进行分类和年份预测的方法。白酒的三维荧光光谱包含了其所含荧光物质信息,对其进行小波分解,其分解系数与特征峰的强度相关。选取高斯小波对三维荧光光谱进行分解,可以避免对二维荧光光谱进行分解时需要选取特定激发波长的问题。对样品的三维荧光光谱进行小波分解后,选取第4层近似系数构建正交因子模型,通过因子载荷系数对白酒进行鉴别。结果指出,贡献率较小的因子蕴含着样品的独特信息,在相似样品的比较中,不容忽视。在对10个品牌的白酒进行香型分类时,先将样品的三维荧光光谱进行高斯小波分解,使用第4层近似系数进行因子分析,得到贡献率由大到小的多个因子。根据因子的载荷系数,对样品进行聚类分析。结果表明,加入贡献率较小的因子可以将正确率提高至90%。通过对因子载荷系数与年份的相关性分析得出,贡献率排在前六位的因子和白酒年份关系较大,而排在后面的因子和白酒年份的相关性较小,因此可以选取前六位的因子建立白酒年份预测模型。通过选取不同贡献率的因子对白酒年份进行预测,其平均误差可降低至0.9年。  相似文献   

20.
店埠河农业小流域是巢湖的主要水源地之一,研究该流域水体溶解性有机质(DOM)组分及来源对了解巢湖水生生态系统至关重要。本研究结合水体的三维荧光光谱,利用平行因子分析(PARAFAC)方法对测定的三维荧光光谱矩阵进行拉曼及瑞利散射校正、组分提取等相关处理,实现对店埠河农业小流域水体DOM的分析,包括三维荧光光谱特征分析、三维荧光组分比例分析、三维荧光特征参数分析以及荧光特征与水质参数的相关性分析,以探究该流域水体DOM的组分及来源。实验结果显示:店埠河农业小流域水体DOM包含两个有效的荧光组分,分别为类蛋白质物质(类色氨酸组分)和类腐殖质物质(类富里酸组分),荧光组分比例表明类色氨酸组分是该流域水体DOM的主要组成部分;水体的荧光指数FI、自生源指标BIX以及腐殖化指标HIX指明该水体中DOM具有强自生源特性和弱腐殖化特征,其内源主要来源于藕塘内部植物及水体其他微生物代谢活动,外源来自于生活污水及养殖饲料的输入,其中内源为水体DOM来源的主要贡献;溶解性有机碳(DOC)与DOM中类色氨酸组分C1呈现极显著正相关,类蛋白质荧光组分可用于该流域水体的DOC动态追踪;pH值与类富里酸组分C2呈现正相关,故水体pH值和类富里酸组分同步增加,说明该流域内水体碱化会伴随着溶解性有机质中类腐殖质物质的增加;溶解氧(DO)与类色氨酸组分C1呈现负相关,说明类色氨酸组分受到水体溶解氧含量的影响。该研究示踪了店埠河农业小流域水体DOM的荧光特征及其组分来源响应机制,可以更好的理解其在生态系统的功能及其环境地球化学循环过程,从而为该流域环境综合治理提供一定的科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号