首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
By capturing the atomic information and reflecting the behaviour governed by a nonlinear potential function, an analytical molecular mechanics approach is applied to establish the constitutive relation for single-walled carbon nanotubes (SWCNTs). The nonlinear tensile deformation curves of zigzag and armchair nanotubes with different radii are predicted, and the elastic properties of these SWCNTs are obtained. A conclusion is made that the nanotube radius has little effect on the mechanical behaviour of SWCNTs subject to simple tension, while the nanotube orientation has larger influence.  相似文献   

2.
Single wall carbon nanotubes with small diameters (〈 5.0 A) subjected to bending deformation are simulated by orthogonal tight-binding molecular dynamics approach. Based on the calculations of C-C bond stretching and breaking in the bending nanotubes, we elucidate the atomistic failure mechanisms of nanotube with small diameters. In the folding zone of bending nanotube, a large elongation of C-C bonds occurs, accounting for the superelastic behaviour. The C-C bonds parallel to the axis direction of nanotube are broken firstly due to the sustained longitudinal stretching strain, giving rising to forming one-notch or two-notch bond-breaking mode depending on nanotube chirMities. The direct bond-breaking mechanism is responsible for the brittle fracture behaviour of nanotubes with small diameters.  相似文献   

3.
陈明君  梁迎春  李洪珠  李旦 《中国物理》2006,15(11):2676-2681
In this paper torsional deformation of the carbon nanotubes is simulated by molecular dynamics method. The Brenner potential is used to set up thesimulation system. Simulation results show that the carbon nanotubes can bear larger torsional deformation, for the armchair type (10,10) single wall carbon nanotubes, with a yielding phenomenon taking place when the torsional angle is up to 63$^{\circ}$(1.1rad). The influence of carbon nanotube helicity in torsional deformation is very small. The shear modulus of single wall carbon nanotubes should be several hundred GPa, not 1\,GPa as others reports.  相似文献   

4.
A carbon-nanotube-atom fixed and activated scheme of non-equilibrium molecular dynamics simulations is put forward to extract the thermal conductivity of carbon nanotubes (CNTs) embedded in solid argon. Though a 6.5% volume fraction of CNTs increases the composite thermal conductivity to about twice as much as that of the pure basal material, the thermal conductivity of CNTs embedded in solids is found to be decreased by 1/8-1/5 with reference to that of pure ones. The decrease of the intrinsic thermal conductivity of the solid-embedded CNTs and the thermal interface resistance are demonstrated to be responsible for the results.  相似文献   

5.
This paper applies a density functional theory(DFT) and grand canonical Monte Carlo simulations(GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC 3 nanotubes and carbon nanotubes.The DFT calculations may provide useful information about the nature of hydrogen adsorption and physisorption energies in selected adsorption sites of these two nanotubes.Furthermore,the GCMC simulations can reproduce their storage capacity by calculating the weight percentage of the adsorbed molecular hydrogen under different conditions.The present results have shown that with both computational methods,the hydrogen storage capacity of BC 3 nanotubes is superior to that of carbon nanotubes.The reasons causing different behaviour of hydrogen storage in these two nanotubes are explained by using their contour plots of electron density and charge-density difference.  相似文献   

6.
We have investigated the morphology and microstructure of carbon nanotubes and nanoparticles in cathode deposits prepared by self-sustained arc discharge. Scanning electron microscopy images indicate that there are two regions exhibiting different morphologies on the top surface of the cathode deposits. In the central region, there is a triangular pattern of spots with a diameter up to 100μm, which consists of carbon nanotubes and nanoparticles. In the fringe region, carbon nanotubes and nanoparticles are distributed randomly. In addition, carbon nanotubes in the central region have a larger inner diameter, compared with those in the fringe region. The outer diameter distribution of tubes in the central region is narrower than that of tubes in the fringe region, while the former has a smaller peak value than the latter. For the nanoparticles, they exhibit a different behaviour from the tubes existing in the same region. The difference between the microstructure of tubes or particles in the two regions is attributed to the different temperatures and temperature gradients during their formation.  相似文献   

7.
The van der Waals(vdW) interactions of carbon nanotube(CNT)–substrate and CNT–CNT can cause strong adhesion. The adhesion can lead to radial deformation of CNTs, which is shown in both experiments and theoretical analysis. A scaling approach is used to predict the mechanical properties, vdW adhesion, and the elastic deformation of CNTs. It is found that the indentation of CNT is proportional to R7/4 and h3/2 in nanotube–substrate system and two same CNT system. Here, R and h are the radius and the wall thickness of CNT, respectively. The indentation ratio H1/H2 for CNT–CNT is proportional to(R1/R2)3/2 and(h2/h1)3/2.  相似文献   

8.
We investigate the interaction of single-walled carbon nanotubes (SWCNTs) and methane molecule from the first principles. Adsorption energies are calculated, and methane affinities for the typical semiconducting and metallic nanotubes are compared. We also discuss role of the structural defects and nanotube curvature on the adsorption capability of the SWCNTs. We could observe larger adsorption energies for the metallic CNTs in comparison with the semiconducting CNTs. The obtained results for the zig zag nanotubes with various diameters reveal that the adsorption energy is higher for nanotubes with larger diameters. For defected tubes the adsorption energies are calculated for various configurations such as methane molecule approaching to the defect sites pentagon, hexagon, and heptagon in the tube surface. The results show that the introduce defects have an important contribution to the adsorption mechanism of the methane on SWNTs.  相似文献   

9.
周晓艳  陆杭军 《中国物理》2007,16(2):335-339
In this paper we present some simulation results about the behaviour of water molecules inside a single wall carbon nanotube (SWNT). We find that the confinement of water in an SWNT can induce a wave-like pattern distribution along the channel axis, similar phenomena are also observed in biological water channels. Carbon nanotubes(CNTs) can serve as simple nonpolar water channels. Molecular transport through narrow CNTs is highly collective because of tight hydrogen bonds in the protective environment of the pore. The hydrogen bond net is important for proton and other signal transports. The average dipoles of water molecules inside CNTs (7,7), (8,8) and (9,9) are discussed in detail. Simulation results indicate that the states of dipole are affected by the diameter of SWNT. The number of hydrogen bonds, the water--water interaction and water--CNT interaction are also studied in this paper.  相似文献   

10.
The transport behavior of pressure-driven aqueous electrolyte solution through charged carbon nanotubes(CNTs) is studied by using molecular dynamics simulations. The results reveal that the presence of charges around the nanotube can remarkably reduce the flow velocity as well as the slip length of the aqueous solution, and the decreasing of magnitude depends on the number of surface charges and distribution. With 1-M KCl solution inside the carbon nanotube, the slip length decreases from 110 nm to only 14 nm when the number of surface charges increases from 0 to 12 e. This phenomenon is attributed to the increase of the solid–liquid friction force due to the electrostatic interaction between the charges and the electrolyte particles, which can impede the transports of water molecules and electrolyte ions. With the simulation results,we estimate the energy conversion efficiency of nanofluidic battery based on CNTs, and find that the highest efficiency is only around 30% but not 60% as expected in previous work.  相似文献   

11.
A set of forty-three hetero-junction CNTs, made of forty-four homogeneous carbon nanotubes of different chiralities and configurations with all possible hetero-connection types, were numerically simulated, based on the finite element method in a commercial finite element software and their Young's and shear moduli, and critical buckling loads were obtained and evaluated under the tensile, torsional and buckling loads with an assumption of linear elastic deformation and also compared with each other. The comparison of the linear elastic behavior of hetero-junction CNTs and their corresponding fundamental tubes revealed that the size, type of the connection, and the bending angle in the structure of hetero-junction CNTs considerably influences the mechanical properties of these hetero-structures. It was also discovered that the Stone-Wales defect leads to lower elastic and torsional strength of hetero-junction CNTs when compared to homogeneous CNTs. However, the buckling strength of the hetero-junction CNTs was found to lie in the range of the buckling strength of their corresponding fundamental tubes. It was also determined that the shear modulus of hetero-junction carbon nanotubes generally tends to be closer to the shear modulus of their wider fundamental tubes while critical buckling loads of these heterostructures seem to be closer to critical buckling loads of their thinner fundamental tubes. The evaluation of the elastic properties of hetero-junction carbon nanotubes showed that among the hetero-junction models, those with armchair-armchair and zigzag-zigzag kinks have the highest elastic modulus while the models with armchair-zigzag connections show the lowest elastic stiffness. The results from torsion tests also revealed the fact that zigzag-zigzag and armchair-zigzag hetero-junction carbon nanotubes have the highest and the lowest shear modulus, respectively. Finally, it was observed that the highest critical buckling loads belong to armchair-armchair hetero-junction carbon nanotubes and the lowest buckling strength was found with the hetero-junction models with armchair-zigzag connection.  相似文献   

12.
The non-covalent adsorption of the insensitive explosive TATB (1,3,5-triamino-2,4,6-trinitrobenzene) on the sidewalls of single-walled carbon nanotubes (CNTs) has been calculated using an ONIOM approach. It was found that TATB deformed remarkably when attached non-covalently on the surface of CNTs, especially on the inner wall of the nanotubes. The diameter of the nanotube determined the degree of distortion of the inner-adsorbed TATB, but had little effect on the deformation of the outer-attached TATB. The non-covalent combination of TATB with the nanotube is an exothermic process due to the negative adsorption energy. TATB adsorption on the inner wall of nanotubes was energetically more favorable than that on the outer wall of the nanotubes. In both cases, the adsorption became more stable with increasing diameter of the nanotube. Our theoretical results can be used as a guideline for the design of energetic nanocomposites based on CNTs and aromatic nitro-explosives.  相似文献   

13.
Single-walled carbon nanotubes (CNTs) were synthesized by a chemical vapor deposition (CVD) method on transmission electron microscopy (TEM) silica coated nickel grids using carbon monoxide as carbon source and iron nanoparticles as catalyst. The produced CNTs were as large as 11 nm in diameter. Investigations on the CNT deformations based on high-resolution TEM images showed that the deformation of CNTs due to their interaction with the substrate occurs at diameters larger than 2.7 nm. Small deformation of free standing tubes was found to occur at diameters above approximately 4.5 nm.  相似文献   

14.
Carbon nanotubes (CNTs) possess extremely high mechanical properties and could be the ultimate reinforcing materials for the development of nanocomposites. In this work, a Finite Element (FE) model based on the molecular mechanics theory was developed to evaluate tensile properties of single-walled carbon nanotubes (SWCNTs). The deformation and fracture of carbon nanotubes under tensile strain conditions were studied by common FE software, Ansys. In this model, individual carbon nanotube was simulated as a frame-like structure, and the primary bonds between two nearest-neighboring atoms were treated as beam elements. The beam element properties were determined via the concept of energy equivalence between molecular dynamics and structural mechanics. So far, several researches have studied the elastic behavior of CNTs, and its nonlinearity is not well understood. The novelty of the model lies on the use of nonlinear beam elements to evaluate SWNTs tensile failure. The obtained calculated mechanical properties show good agreement with existing numerical and experimental results.  相似文献   

15.
Considering impurity doping in small sized carbon nanotubes of diameter around 0.4 nm, we have calculated the donor binding energy by increasing the dopant concentration through a screening function that includes the curvature effect. We could observe the sudden fall in donor binding energy and metallic behaviour of the smaller single walled carbon nanotubes around 1011/cm2 (0.0026%) of impurity concentration. This result is useful for nano electronic device application such as nano diodes and switches.  相似文献   

16.
采用催化裂解的方法制备了碳纳米管,其比容量为12F/g.采用碳纳米管作为电极基体,采用阴极电化学还原Ni(NO3)2的方法在碳纳米管基体表面均匀的沉积了纳米氧化镍颗粒并由此制备了氧化镍碳纳米管复合电极材料.采用循环伏安、恒流充放电、交流阻抗及扫描电镜等方法考察了复合电极材料的容量特性、阻抗特性、自放电特性以及电极表观特征.实验表明复合电极具有良好的电化学特性,碳纳米管基体在明显降低氧化镍材料的阻抗的同时还提高了电极材料的电化学容量并拓宽了电极材料的有效工作电位窗,复合电极在6mol/LKOH电解液中比容量达到25F/g且表现了良好的电化学可逆性.与碳纳米管基电容器相比,采用氧化镍复合电极材料组装的电容器具有较低的自放电率.  相似文献   

17.
磁性碳纳米管吸附去除水中甲基橙的研究   总被引:1,自引:0,他引:1  
采用高温催化裂解法制备碳纳米管,对其用浓硝酸氧化法进行纯化处理,并用化学共沉淀方法制备了磁性碳纳米管(简称磁性管)。利用场发射扫描电子显微镜对磁性管进行了表征。将磁分离技术应用于碳纳米管吸附性能研究,探索碳纳米管负载磁性颗粒后对甲基橙的吸附性能,寻找最佳实验条件,对吸附质溶液进行紫外-可见吸收光谱分析。同时,进行了磁性管的脱附和再吸附性能研究。  相似文献   

18.
Based on the Mindlin's first-order shear deformation plate theory this paper focuses on the free vibration behavior of functionally graded nanocomposite plates reinforced by aligned and straight single-walled carbon nanotubes (SWCNTs). The material properties of simply supported functionally graded carbon nanotube-reinforced (FGCNTR) plates are assumed to be graded in the thickness direction. The effective material properties at a point are estimated by either the Eshelby-Mori-Tanaka approach or the extended rule of mixture. Two types of symmetric carbon nanotubes (CNTs) volume fraction profiles are presented in this paper. The equations of motion and related boundary conditions are derived using the Hamilton's principle. A semi-analytical solution composed of generalized differential quadrature (GDQ) method, as an efficient and accurate numerical method, and series solution is adopted to solve the equations of motions. The primary contribution of the present work is to provide a comparative study of the natural frequencies obtained by extended rule of mixture and Eshelby-Mori-Tanaka method. The detailed parametric studies are carried out to study the influences various types of the CNTs volume fraction profiles, geometrical parameters and CNTs volume fraction on the free vibration characteristics of FGCNTR plates. The results reveal that the prediction methods of effective material properties have an insignificant influence of the variation of the frequency parameters with the plate aspect ratio and the CNTs volume fraction.  相似文献   

19.
胡小颖  王淑敏  裴艳慧  田宏伟  朱品文 《物理学报》2013,62(3):38101-038101
利用等离子体化学气相沉积技术, 在引入Ti过渡层后的Co膜表面一步制备出碳纳米片-碳纳米管复合材料, 研究了Co膜厚度对复合材料形貌及场发射性质的影响. 当Co薄膜厚度为11 nm时, 得到了垂直基片定向生长的碳纳米管和碳纳米片复合物, 此时, 碳纳米片分布在碳纳米管的管壁上和管的顶端, 样品的场发射性能最佳.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号