首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张林  商德江 《应用声学》1997,16(2):37-42
根据双水听器法测量声强的基本原理,本文提出了基阵在湖中的布放及测量声强分布的实施步骤。通过对试验数据的处理与分析,给出了声强分布的三维力和等值曲线图,并利用扫描平面上的声强分布。计算出声源辐射的声功率。实验表明,本文提出的用列阵式双水听器声强测量系统,作平面扫描测量声强分布的方案是合理的;利用所测得的双平面近场声强分布来计算源的辐射也是可行的。  相似文献   

2.
The modal expansion method has been used to formulate expressions for real and imaginary parts of the complex sound intensity inside enclosures. Based on theoretical results, the computer program has been developed to simulate the acoustic intensity vector field inside the irregular room whose shape resembles the capital letter L. Calculation results have shown that a low-frequency distribution of the acoustic intensity is strongly influenced by the modal localization and the characteristic objects in the active intensity field are energy vortices and saddle points positioned irregularly inside the room. It was found that for small sound damping the vortex centers lie exactly on the lines corresponding to zeros of the eigenfunction for a dominant mode. An increase in a sound attenuation results in the change of vortex positions and can cause the formation of new vortices. Finally, an influence of the wall impedance on the quantitative relation between the acoustic and reactive intensities was studied and it was concluded that for very small sound damping the behavior of the sound intensity is basically only oscillatory.  相似文献   

3.
针对现有方法对材料吸声系数进行现场测量时存在低频测量误差大的问题,本文提出了一种利用扬声器线阵列对材料吸声系数进行现场测量的新方法。该方法使用基于能量比值约束的最小二乘法在待测材料表面进行平面波声场重建并结合双传声器传递函数法对材料的吸声系数进行测量。数值仿真表明在100~1600 Hz频率范围内,新方法在未加约束时能够对材料的吸声系数进行准确测量。在半消声室中利用新方法测量了三聚氰胺泡沫的吸声系数,分析了能量比值约束值对测量结果的影响,并和阻抗管以及其它两种现场测量方法的测量结果进行了对比。结果表明该方法能够对吸声材料在160~1600 Hz频段内的吸声系数进行准确测量,并且相较于现存的现场测量方法,新方法具有更低的测量频率下限。  相似文献   

4.
An experimental implementation of a global sound equalization method in a rectangular room using active control is described in this paper. The main purpose of the work has been to provide experimental evidence that sound can be equalized in a continuous three-dimensional region, the listening zone, which occupies a considerable part of the complete volume of the room. The equalization method, based on the simulation of a progressive plane wave, was implemented in a room with inner dimensions of 2.70 m × 2.74 m × 2.40 m. With this method, the sound was reproduced by a matrix of 4 × 5 loudspeakers in one of the walls. After traveling through the room, the sound wave was absorbed on the opposite wall, which had a similar arrangement of loudspeakers, by means of active control. A set of 40 digital FIR filters was used to modify the original input signal before it was fed to the loudspeakers, one filter for each transducer. The optimal arrangement of the loudspeakers and the maximum frequency that can be equalized is analyzed theoretically in this paper. The presented experimental results show that sound equalization was possible from 10 Hz to approximately 425 Hz in the listening zone. A flat frequency response with deviations within ±5 decibels from the desired value was achieved. A higher demanding performance with deviations within ±1.5 decibels from a flat frequency response was attained in the interval between 20 Hz and 280 Hz. At the same time, the impulse response was quite well approximated to a delayed delta function in the listening zone. Examples of the spatial distribution of the sound field are also shown.  相似文献   

5.
The cochlear plays a vital role in the sense and sensitivity of hearing; however, there is currently a lack of knowledge regarding the relationships between mechanical transduction of sound at different intensities and frequencies in the cochlear and the neurochemical processes that lead to neuronal responses in the central auditory system. In the current study, we introduced manganese-enhanced MRI (MEMRI), a convenient in vivo imaging method, for investigation of how sound, at different intensities and frequencies, is propagated from the cochlear to the central auditory system. Using MEMRI with intratympanic administration, we demonstrated differential manganese signal enhancements according to sound intensity and frequencies in the ascending auditory pathway of the rat after administration ofintratympanicMnCl2.Compared to signal enhancement without explicit sound stimuli, auditory structures in the ascending auditory pathway showed stronger signal enhancement in rats who received sound stimuli of 10 and 40 kHz. In addition, signal enhancement with a stimulation frequency of 40 kHz was stronger than that with 10 kHz. Therefore, the results of this study seem to suggest that, in order to achieve an effective response to high sound intensity or frequency, more firing of auditory neurons, or firing of many auditory neurons together for the pooled neural activity is needed.  相似文献   

6.
The aim of this work was to study the effects of sound frequency, sound intensity and viscosity of slag on the slag foaming rate and the steady-state foam height. Experiments were carried out using two slags (BaO–B2O3) melted at a temperature of 1223 or 1273 K, as well as water–glycerin solutions at room temperature. Low frequency sound waves (<1.3 kHz) are found to be more effective in the slag foaming suppression than high frequency waves (1.3–12 kHz). The steady-state foam height decreases abruptly when the sound pressure reaches a threshold value that depends on sound frequency and liquid viscosity. The results can be explained in terms of enhancing the rates of liquid drainage and film rupture induced by sound.  相似文献   

7.
8.
马娟  李志  薛具奎 《中国物理 B》2009,18(10):4122-4129
We consider rotational motion of an interacting atomic Bose-Einstein condensate (BEC) with both two- and three-body interactions in a quadratic-plus-quartic and harmonic-plus-Gaussian trap. By using the variational method, the influence of the three-body interaction and the anharmonicity of the trap on the lowest energy surface mode excitation and the spontaneous shape deformation (responsible for the vortex formation) in a rotating BEC is discussed in detail. It is found that the repulsive three-body interaction helps the formation of the vortex and reduces the lowest energy surface mode frequency and the critical rotational frequency of the system. Moreover, the critical rotational frequency for the vortex formation in the harmonic-plus-Gaussian potential is lower than that in the quadratic-plus-quartic potential.  相似文献   

9.
The properties of intensity streamlines and vorticity streamlines are discussed in this paper. It is found that the properties in three-dimensional sound fields are different from the properties in two-dimensional sound fields. The integral behavior of intensity streamlines is that the beginning and the end are attached to a sound source surface or that the beginning is on the sound source surface and the end extends into the infinite. For the vorticity streamlines, the integral behavior is that it is a closed curve or that the beginning and the end are attached to the sound source surface. Three examples are given for intensity and vorticity streamlines.  相似文献   

10.
An experimentally validated finite element method is used to model the sound level in rooms at low frequencies. It is demonstrated that the dimensions of rectangular rooms strongly influence the sound pressure level difference. Additional factors were investigated which are not normally considered in the frequency range where diffuse sound field conditions can be assumed. Three effects were investigated: room damping due to wall vibrations, furniture, the effect of small deviations from simple rectangular shapes. It is confirmed by field measurements that the vibrations of masonry walls and floors introduce less damping than surfaces of lightweight construction. Assigning to the FE model a damping equivalent to a surface absorption of 0.02 reproduces the effect of walls of heavyweight construction. Damping equivalent to a surface absorption of 0.15 reproduces the effects of plastered timber-frame walls, floors and ceilings. The work was briefly extended to a room pair built with heavyweight and lightweight material of construction. The modification of the shape of the room frequency response highlights well the effect of material of construction. In-situ and laboratory measurements show that furniture has little effect on steady-state room response below 100 Hz. Modelling a wall recess smaller than 0.5 m improved the agreement between prediction and measurements but the assumption of a simple rectangular room remains appropriate.  相似文献   

11.
吕刚  曹学成  张红  秦羽丰  王林辉  厉桂华  高峰  孙丰伟 《物理学报》2016,65(21):217503-217503
针对坡莫合金纳米圆盘中的单个磁涡旋结构,采用微磁学模拟研究了磁涡旋极性翻转过程中的局域能量密度.磁涡旋的极性翻转通过与初始涡旋极性相反的涡旋与反涡旋对的生成,以及随后发生的反涡旋与初始涡旋的湮没来实现.模拟结果显示当纳米圆盘样品中局域能量密度的最大值达到一临界值时,磁涡旋将会实现极性翻转,其中交换能起主导作用.基于涡旋极性翻转过程中出现的三涡旋态结构,应用刚性磁涡旋模型对局域交换能量密度进行了理论分析.通过刚性磁涡旋模型得到的磁涡旋极性翻转所需的局域交换能量密度的临界值与模拟结果符合得较好.  相似文献   

12.
如何求解阻尼边界封闭空间中声源点到接收点的低频声传递函数已成为目前小尺度封闭空间可听化技术研究的关键技术,能处理任意形状及复杂边界条件的有限元素法可作为求解该问题的适合方法,以室内声声有源Helmholtz方程及其相应边界方程为基础,本文推导出了用于小尺度阻尼边界封闭空间声传递函数的有限元素求解方法,并编制了相应的计算机程序,在算例中,首先通过与模态叠加法计算结果进行比较,验证了该方法的正确性。最后计算了某型车体内腔中任意两点间声传递函数。  相似文献   

13.
乔钢  桑恩方 《应用声学》2005,24(5):305-310
本文给出了基于矢量传感器的ESPRIT频率估计算法,并将其应用于频率调制水声通信系统中。与声强频率估计算法相比,ESPRIT频率估计可在小样本的情况下,获得高精度的频率估计。仿真和湖试结果表明,基于矢量传感器的ESPRIT频率估计算法可以提高通信速率并降低对通信系统的带宽要求。本算法对信噪比的要求较高,目前看,较适用于近程高速水声通信。  相似文献   

14.
Hydrodynamic cavitation in a Venturi tube produces luminescence, and the luminescence intensity reaches a maximum at a certain cavitation number, which is defined by upstream pressure, downstream pressure, and vapor pressure. The luminescence intensity of hydrodynamic cavitation can be enhanced by optimizing the downstream pressure at a constant upstream pressure condition. However, the reason why the luminescence intensity increases and then decreases with an increase in the downstream pressure remains unclear. In the present study, to clarify the mechanism of the change in the luminescence intensity with cavitation number, the luminescence produced by the hydrodynamic cavitation in a Venturi tube was measured, and the hydrodynamic cavitation was precisely observed using high-speed photography. The sound velocity in the cavitating flow field, which affects the aggressive intensity of the cavitation, was evaluated. The collapse of vortex cavitation was found to be closely related to the luminescence intensity of the hydrodynamic cavitation. A method to estimate the luminescence intensity of the hydrodynamic cavitation considering the sound velocity was developed, and it was demonstrated that the estimated luminescence intensity agrees well with the measured luminescence intensity.  相似文献   

15.
By performing numerical simulations based on the Gross-Pitaevskii equation, we make direct quantitative measurements of the sound energy released due to superfluid vortex reconnections. We show that the energy radiated expressed in terms of the loss of vortex line length is a simple function of the reconnection angle. In addition, we study the temporal and spatial distribution of the radiation and show that energy is emitted in the form of a sound pulse with a wavelength of a few healing lengths.  相似文献   

16.
For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acoustic wavelengths) or if the stationary phase path is near the critical angle. In such cases, the entire acoustic field must be considered, including inhomogeneous waves associated with diffraction (i.e., those components that vanish with increasing frequency). The energy flow from a continuous-wave monopole point source across the boundary is visualized by tracing acoustic streamlines: those curves whose tangent at every point is parallel to the local acoustic intensity vector, averaged over a wave cycle. It is seen that the acoustic energy flow is not always in line with the "Snell's law" or stationary phase path. Also, plots of acoustic energy streamlines do not display unusual behavior in the vicinity of the critical angle. Finally, it is shown that there exists a law of refraction of acoustic energy streamlines at boundaries with density discontinuities analogous to Snell's law of refraction of ray paths across sound speed discontinuities. Examples include water-to-seabed transmission and water-to-air transmission.  相似文献   

17.
We report on the first quantitative test of acoustic orbital angular momentum transfer to a sound absorbing object immersed in a viscous liquid. This is done by realizing an original experiment that is to spin a millimeter-size target disk using an ultrasonic vortex beam. We demonstrate the balance between the acoustic radiation torque calculated from the Brillouin stress tensor and the viscous torque evaluated from the steady state spinning frequency. Moreover, we unveil a rotational acoustic streaming phenomenon that results from the acoustic angular momentum transfer to the host fluid. We show that it lowers the viscous torque, thereby restoring the torque balance.  相似文献   

18.
王怀应 《应用声学》1998,17(3):15-19
本文介绍了强测量技术在水下结构辐射近场测量中的实际测量系统,特别是水下声系统的扫描平面的实现方法及定位误差控制方法,最后讨论和分析了实际测量结果,从而说明该系统用水下声强测量是可行的。  相似文献   

19.
This paper presents the results of experimental studies of the noise of a residential split-system air-conditioner unit. The compressor and condenser and associated fans were removed from the unit and did not form part of the studies. Care was taken with the unit to separate the inlet and exhaust noise from the noise radiated from the cabinet. The measurements were made with a two-microphone sound intensity probe and these resulted in sound power level data. The sound power levels produced by radiation from the inlet, exhaust and cabinet were obtained for five different volume flow rates. The effect on the sound power generated by removing the coil was investigated. Measurements and subjective studies show that the low frequency sound is predominantly radiated from the exhaust and inlet. At high frequency, the cabinet noise dominates.  相似文献   

20.
Hao Zhou 《中国物理 B》2022,31(4):44702-044702
Owing to the influence of the viscosity of the flow field, the strength of the shedding vortex decreases gradually in the process of backward propagation. Large-scale vortexes constantly break up, forming smaller vortexes. In engineering, when numerical simulation of vortex evolution process is carried out, a large grid is needed to be arranged in the area of outflow field far from the boundary layer in order to ensure the calculation efficiency. As a result, small scale vortexes at the far end of the flow field cannot be captured by the sparse grid in this region, resulting in the dissipation or even disappearance of vortexes. In this paper, the effect of grid scale is quantified and compared with the viscous effect through theoretical derivation. The theoretical relationship between the mesh viscosity and the original viscosity of the flow field is established, and the viscosity term in the turbulence model is modified. This method proves to be able to effectively improve the intensity of small-scale shedding vortexes at the far end of the flow field under the condition of sparse grid. The error between the simulation results and the results obtained by using fine mesh is greatly reduced, the calculation time is shortened, and the high-precision and efficient simulation of the flow field is realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号