首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
We report results obtained from FTIR and TEM measurements carried out on silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) from silane diluted with hydrogen. The hydrogen content, the microstructure factor, the mass density and the volume per Si-H vibrating dipoles were determined as a function of the hydrogen dilution. Hydrogen dilution of silane results in an inhomogeneous growth during which the material evolves from amorphous hydrogenated silicon (a-Si:H) to microcrystalline hydrogenated silicon (μc-Si:H). With increasing dilution the transition from amorphous to microcrystalline phase appears faster and the average mass density of the films decreases. The μc-Si:H films are mixed-phase void-rich materials with changing triphasic volume fractions of crystalline and amorphous phases and voids. Different bonding configurations of vibrating Si-H dipoles were observed in the a-Si:H and μc-Si:H. The bonding of hydrogen to silicon in the void- and vacancy-dominated mechanisms of network formation is discussed.  相似文献   

3.
A comparative study of hardness of thin films of hydrogenated amorphous silicon (a-Si:H) and hydrogen-free amorphous silicon (a-Si) was carried out to reveal the role of hydrogen in the plastic properties of amorphous silicon. In addition, the effect of hydrogen on hardness was established by changing hydrogen concentration in the material using post-deposition processing of the samples. The hydrogen concentration in a-Si:H was decreased by thermal annealing. In a-Si hydrogen was introduced by plasma hydrogenation. The values of hardness of the as-prepared a-Si and a-Si:H films were determined by nanoindentation using depth profiling. Low-depth indentation was applied to evaluate the effect of post-hydrogenation. The results obtained show that the presence of hydrogen in the amorphous silicon network leads to the increase in hardness. The conducted experiments demonstrate that plasma hydrogenation can be used as an effective tool to increase the hardness of amorphous silicon. Hardness of a-Si:H of about 12.3–12.7 GPa is as high as of crystalline silicon, suggesting a-Si:H can be a substitute for crystalline silicon in some MEMS.  相似文献   

4.
Hydrogen effusion results are discussed for hydrogenated amorphous silicon (a-Si:H) and related alloys as well as for crystalline silicon (c-Si). It is demonstrated that depending on the microstructure of the material, hydrogen effusion gives information on hydrogen diffusion or surface desorption. The results suggest for compact a-Si:H and for ion implanted c-Si a similar hydrogen diffusion process, which is a trap limited motion of atomic hydrogen. Hydrogen effusion from defect-free c-Si and from void-rich amorphous semiconductors is limited by surface desorption. Both hydrogen diffusion and desorption depend on the Fermi energy if hydrogen bonds to the host material are broken.  相似文献   

5.
After irradiation of hydrogenated amorphous and microcrystalline silicon (a-Si:H and μc-Si:H) with 2 MeV electrons at 100 K, we observe satellite-like components close to the dominating electron spin resonance (ESR) signal of these materials. The satellites overlap with the commonly observed dangling bond resonance and are proposed to originate from a hyperfine interaction with the nuclear magnetic moment of hydrogen atoms in a-Si:H and μc-Si:H. Our present study is focused on the verification of this hypothesis. Equivalent hydrogenated and deuterated a-/μc-Si:H/D materials have been investigated with ESR before and after 2 MeV electron bombardment. From the difference between ESR spectra of hydrogenated and deuterated samples we identify the doublet structure in the ESR spectra as a hyperfine pattern of hydrogen-related paramagnetic centers. The observations of H-related paramagnetic centers in a-/μc-Si:H are of particular interest in view of metastability models of a-Si:H, which include H-related complexes as precursors for the stabilization of the metastable Si dangling bonds. The nature of the observed center is discussed in the light of known H-related complexes in crystalline Si and suggested H-related dangling bonds in a-Si:H.  相似文献   

6.
A series of experimental studies has been made on the relationship between optical and structural properties of hydrogenated amorphous silicon (a-Si:H) prepared under various conditions. It has been clarified by analysing the results that the shape of the energy spectrum near the band edge and the distribution of the valence-band tail states depend primarily on the structural disorder of the Si network in a-Si:H. On the other hand, the total content and the bonding mode of bonded hydrogen have little effects on these electronic properties of a-Si:H. It has also been found that the distribution of the valenceband tail states might be related to other unidentified factor(s) besides the structural disorder. The present results have been compared with those of the previous experimental and theoretical studies.  相似文献   

7.
Hydrogen diffusion and its role in the many electronic metastability phenomena in hydrogenated amorphous silicon (a-Si:H) is reviewed. A-Si:H contains about 10 at% hydrogen, most of which is bonded to silicon. The hydrogen diffuses at relatively low temperatures by releasing hydrogen from the Si-H bonds into interstitial sites. The reactions of hydrogen with the silicon dangling bonds and the weak bonds provide a hydrogen-mediated mechanism for electron-structural interactions, which are manifested as electronic metastability. The annealing of light-induced defects, the equilibration of defects and dopants, the stretched exponential relaxation kinetics, and the atomic structure formed during growth, are all attributed to hydrogen diffusion.  相似文献   

8.
Hydrogenated silicon (Si:H) film was grown by radio frequency plasma enhanced chemical vapor deposition (PECVD) method. The transition between hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (μc-Si:H) was characterized by X-ray diffraction analysis. A semiconductor system was used to measure low frequency noise (1/f noise) and random telegraph switching noise of Si:H films. The results show that the 1/f noise of μc-Si:H is 4 orders of magnitude lower than that of a-Si:H and no RTS noise was found in both films. It also shows that using μc-Si:H instead of a-Si:H film as a sensing layer will enable the development of high performance uncooled microbolometer.  相似文献   

9.
氢化非晶硅薄膜中氢含量及键合模式的红外分析   总被引:10,自引:0,他引:10       下载免费PDF全文
Fourier红外透射(FTIR)谱技术是研究氢化非晶硅(a-Si∶H)薄膜中氢的含量(CH)及硅—氢键合模式(Si-Hn)最有效的手段.对用等离子体化学气相沉积(PCVD)方法在不同的衬底温度(Ts)下制备出的氢化非晶硅薄膜,通过红外透射光谱的基线拟合、高斯拟合分析,得到了薄膜中的氢含量,硅氢键合模式及其组分,并分析了这些参量随衬底温度变化的规律.  相似文献   

10.
C Fisker  ML Trolle  TG Pedersen 《J Phys Condens Matter》2012,24(32):325803, 1-325803, 6
The ST12 phase of silicon is investigated as a possible model for amorphous silicon (a-Si). The structure is studied both with and without hydrogenated hole defects to model the properties of hydrogenated amorphous silicon (a-Si:H) as well as a-Si. A density functional theory model of ST12 Si is structurally relaxed, and the radial correlation function and phonon density of states are used to compare the structural properties of the model to those of a-Si. One-shot GW self-energy corrections are used to generate the band structure, and the corrected electronic structure is found to reproduce the experimental energy gap of a-Si. Introducing hydrogenated defects to the ST12 structure leads to a slight decrease in the band gap and a shift in the density of states, as the breaking of symmetry results in band splitting. The dielectric functions are calculated for both a-Si and a-Si:H, using the GW corrected band structures, with a density functional perturbation theory approach. The model ST12 Si is found to absorb strongly at slightly lower energies than experimental a-Si, whereas the spectrum of the hydrogenated ST12 closely matches that of a-Si:H.  相似文献   

11.
A series of phosphorous-doped hydrogenated amorphous silicon films (a-Si:H) were crystallized using step-by-step laser crystallization process. The structural changes during the sequential crystallization process were detected by Raman measurements. The dehydrogenation was monitored by measuring the Si-H local vibrational modes using Raman spectroscopy and hydrogen effusion measurements. Interestingly, hydrogen bonding is affected by doping of the amorphous material. The influence of doping concentrations, thus the Fermi energy on electronic properties has been investigated employing secondary ion mass spectroscopy (SIMS), dark-conductivity- and Hall-effect measurements. The results from hydrogen effusion are consistent with the results obtained from Raman spectroscopy, Hall-effect- and dark-conductivity measurements.  相似文献   

12.
We exposed a freshly deposited boron-doped, hydrogenated amorphous silicon (a-Si:H) layer to hydrogen plasma under conditions of chemical transport. In situ spectroscopic ellipsometry measurements revealed that atomic hydrogen impinging on the film surface behaves differently before and after crystallization. First, the plasma exposure increases hydrogen solubility in the a-Si:H network leading to the formation of a hydrogen-rich subsurface layer. Then, once the crystallization process engages, the excess hydrogen starts to leave the sample. We have attributed this unusual evolution of the excess hydrogen to the grown hydrogenated microcrystalline (μc-Si:H) layer, which gradually prevents the atomic hydrogen from the plasma reaching the μc-Si:H/a-Si:H interface. Consequently, hydrogen solubility, initially increased by the hydrogen plasma, recovers the initial value of an untreated a-Si:H material. To support the theory that the outdiffusion is a consequence and not the cause of the μc-Si:H layer growth, we solved the combined diffusion and trapping equations, which govern hydrogen diffusion into the sample, using appropriate approximations and a specific boundary condition explaining the lack of hydrogen injection during μc-Si:H layer growth.  相似文献   

13.
肖友鹏  魏秀琴  周浪 《中国物理 B》2017,26(4):48104-048104
Intrinsic hydrogenated amorphous silicon(a-Si:H) film is deposited on n-type crystalline silicon(c-Si) wafer by hotwire chemical vapor deposition(HWCVD) to analyze the amorphous/crystalline heterointerface passivation properties.The minority carrier lifetime of symmetric heterostructure is measured by using Sinton Consulting WCT-120 lifetime tester system,and a simple method of determining the interface state density(D_(it)) from lifetime measurement is proposed.The interface state density(D_(it)) measurement is also performed by using deep-level transient spectroscopy(DLTS) to prove the validity of the simple method.The microstructures and hydrogen bonding configurations of a-Si:H films with different hydrogen dilutions are investigated by using spectroscopic ellipsometry(SE) and Fourier transform infrared spectroscopy(FTIR) respectively.Lower values of interface state density(D_(it)) are obtained by using a-Si:H film with more uniform,compact microstructures and fewer bulk defects on crystalline silicon deposited by HWCVD.  相似文献   

14.
Hydrogenated amorphous silicon (a-Si:H) thin films have been considered for use in solar cell applications because of their significantly reduced cost compared to crystalline bulk silicon. However, their overall efficiency and stability are lower than that of their bulk crystalline counterpart. Limited work has been performed on simultaneously solving the efficiency and stability issues of a-Si:H. Previous work has shown that surface texturing and crystallization on a-Si:H thin film can be achieved through a single-step laser processing, which can potentially alleviate the disadvantages of a-Si:H in solar cell applications. In this study, hydrogenated and dehydrogenated amorphous silicon thin films deposited on glass substrates were irradiated by KrF excimer laser pulses and the effect of hydrogen on surface morphologies and microstructures is discussed. Sharp spikes are focused only on hydrogenated films, and the large-grained and fine-grained regions caused by two crystallization processes are also induced by presence of hydrogen. Enhanced light absorptance is observed due to light trapping based on surface geometry changes of a-Si:H films, while the formation of a mixture of nanocrystalline silicon and original amorphous silicon after crystallization suggests that the overall material stability can potentially improve. The relationship between crystallinity, fluence and number of pulses is also investigated. Furthermore, a step-by-step crystallization process is introduced to prevent the hydrogen from diffusing out in order to reduce the defect density, and the relationship between residue hydrogen concentration, fluence and step width is discussed. Finally, the combined effects show that the single-step process of surface texturing and step-by-step crystallization induced by excimer laser processing are promising for a-Si:H thin-film solar cell applications.  相似文献   

15.
An investigation on the correlation between amorphous Si (a-Si) domains and Er^{3+} emission in the Er-doped hydrogenated amorphous silicon suboxide (a-Si:O:H) film is presented. On one hand, a-Si domains provide sufficient carriers for Er^{3+} carrier-mediated excitation which has been proved to be the highest excitation path for Er^{3+} ion; on the other hand, hydrogen diffusion from a-Si domains to amorphous silicon oxide (a-SiO_x) matrix during annealing has been found and this possibly decreases the number of nonradiative centres around Er^{3+} ions. This study provides a better understanding of the role of a-Si domains on Er^{3+} emission in a-Si:O:H films.  相似文献   

16.
陈剑辉  杨静  沈艳娇  李锋  陈静伟  刘海旭  许颖  麦耀华 《物理学报》2015,64(19):198801-198801
在本征氢化非晶硅(a-Si:H(i))/晶体硅(c-Si)/a-Si:H(i)异质结构上溅射ITO时, 发现后退火可大幅增加ITO/a-Si:H(i)/c-Si/a-Si:H(i)的少子寿命(从1.7 ms到4 ms). 这一增强效应可能的三个原因是: ITO/a-Si:H(i)界面场效应作用、退火形成的表面反应层影响以及退火对a-Si:H(i)材料本身的优化, 但本文研究结果表明少子寿命增强效应与ITO和表面反应层无关; 对不同沉积温度制备的a-Si:H(i)/c-Si/a-Si:H(i)异质结后退火的研究表明: 较低的沉积温度(<175 ℃)后退火增强效应显著, 而较高的沉积温度(>200 ℃)后退火增强效应不明显, 可以确定“低温长高温后退火”是获得高质量钝化效果的一种有效方式; 采用傅里叶红外吸收谱(FTIR)研究不同沉积温度退火前后a-Si:H(i)材料本身的化学键构造, 发现退火后异质结少子寿命大幅提升是由于a-Si:H(i)材料本身的结构优化造成的, 其深层次的本质是通过材料的生长温度和退火温度的优化匹配来控制包括H含量、H键合情况以及Si原子无序性程度等微观因素主导作用的一种竞争性平衡, 对这一平衡点的最佳控制是少子寿命大幅提升的本质原因.  相似文献   

17.
S.C. Agarwal 《哲学杂志》2013,93(15):1642-1660
An attempt is made to highlight the importance of inhomogeneities in hydrogenated amorphous silicon (a-Si:H), in controlling its electronic properties. We note that hydrogen increases the gap in a-Si:H and that hydrogen is distributed inhomogeneously in it. This gives rise to long-range potential fluctuations, which are mostly uncorrelated and usually ignored. These and other such considerations have not only enabled us to gain new insights into the behaviour of a-Si:H in general, but have also allowed us to resolve several unsolved puzzles. Among these are questions like why undoped a-Si:H is n-type, why the creation of dangling bonds upon light soaking (LS) so inefficient, why a-Si:H degrades more upon LS when it is doped, why the reciprocity fails for light-induced degradation, why presence of nanocrystalline silicon improves stability and so on. We provide evidence to support some of our ideas and make suggestions for verifying the others.  相似文献   

18.
This letter shows that intrinsic hydrogenated amorphous silicon (a‐Si:H) films deposited by RF magnetron sputtering can provide outstanding passivation of crystalline silicon surfaces, similar to that achieved by plasma enhanced chemical vapour deposition (PECVD). By using a 2% hydrogen and 98% argon gas mixture as the plasma source, 1.5 Ω cm n‐type FZ silicon wafers coated with sputtered a‐Si:H films achieved an effective lifetime of 3.5 ms, comparable to the 3 ms achieved by PECVD (RF and microwave dual‐mode). This is despite the fact that Fourier transform infrared spectroscopy measurements show that sputtering and PECVD deposited films have very different chemical bonding configurations. We have found that film thickness and deposition temperature have a significant impact on the passivation results. Self‐annealing and hydrogen plasma treatment during deposition are likely driving forces for the observed changes in surface passivation. These experimental results open the way for the application of sputtered a‐Si:H to silicon heterojunction solar cells. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
20.
Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) films were deposited by DC magnetron sputtering technique with argon and hydrogen plasma mixture on Al deposited by thermal evaporation on glass substrates. The a-Si/Al and a-Si:H/Al thin films were annealed at different temperatures ranging from 250 to 550 °C during 4 h in vacuum-sealed bulb. The effects of annealing temperature on optical, structural and morphological properties of as-grown as well as the vacuum-annealed a-Si/Al and a-Si:H/Al thin films are presented in this contribution. The averaged transmittance of a-Si:H/Al film increases upon increasing the annealing temperature. XRD measurements clearly evidence that crystallization is initiated at 450 °C. The number and intensity of diffraction peaks appearing in the diffraction patterns are more important in a-Si:H/Al than that in a-Si/Al layers. Results show that a-Si:H films deposited on Al/glass crystallize above 450 °C and present better crystallization than the a-Si layers. The presence of hydrogen induces an improvement of structural properties of poly-Si prepared by aluminium-induced crystallization (AIC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号