首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高玥  卢铃  吴鸣  杨军  曹寅 《应用声学》2022,41(1):12-20
基于传声器阵列的声成像技术是解决噪声源识别的有效途径之一.该文提出了一种基于球谐分解的L2范数广义逆波束形成算法,并对此算法在分布式球形阵列布放方案下进行了定位精度及鲁棒性的对比分析研究.仿真结果显示,此算法对低频相干声源具有较高的空间定位精确度,且阵元位置误差对此算法性能的影响有限.通过在半消声室进行实验进一步证明了...  相似文献   

2.
马利敏  吴宗敏 《中国物理 B》2009,18(8):3099-3103
In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative and a difference scheme to approximate the temporal derivative. The advantage of the obtained scheme is that the algorithm is very simple so that it is very easy to implement. The results of numerical experiments are presented and compared with analytical solutions to confirm the good accuracy of the presented scheme.  相似文献   

3.
In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach  相似文献   

4.
采用非结构化网格有限容积法求解了不可压N-S方程组,对流项采用GAMMA格式,扩散项采用二阶中心差分格式建立离散方程,用SOAR算法处理压力与速度的耦合关系,得到了一种求解不可压N-S方程的非结构网格耦合求解器。通过方腔顶盖驱动流、后台阶绕流以及方腔自然对流等几个典型的算例,考察了求解器的计算精度及收敛特性,并与SIMPLE算法进行了比较,结果表明该求解器是有效可行的。  相似文献   

5.
提出了数值求解三维变系数对流扩散方程非等距网格上的四阶精度19点紧致差分格式,为了提高求解效率,采用多重网格方法求解高精度格式所形成的大型代数方程组。数值实验结果表明本文方法对于不同的网格雷诺数问题,在精确性、稳定性和减少计算工作量方面均明显优于7点中心差分格式。  相似文献   

6.
基于MSE模型的高分辨率遥感图像变化检测   总被引:1,自引:0,他引:1  
目前,传统高光谱分辨率遥感图像变化检测方法大多基于单一特征信息进行处理,没有综合影像所有特征信息,难以检测出完整的变化信息。为此,提出了一种基于多特征流形嵌入模型(multiview spectral embedding, MSE)的高分辨遥感图像变化检测方法,利用该模型对图像特征变化信息向量中所有的变化信息进行融合,获得完整的检测结果。实验结果表明,本文方法的检测精度好于传统的变化检测方法,并且稳定性良好。  相似文献   

7.
马利敏  吴宗敏 《中国物理 B》2010,19(1):10201-010201
In this paper, we use a kind of univariate multiquadric quasi-interpolation to solve a parabolic equation with overspecified data, which has arisen in many physical phenomena. We obtain the numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a simple forward difference to approximate the temporal derivative of the dependent variable. The advantage of the presented scheme is that the algorithm is very simple so it is very easy to implement. The results of the numerical experiment are presented and are compared with the exact solution to confirm the good accuracy of the presented scheme.  相似文献   

8.
本文研究了无线传感网络( Wireless Sensor Network,WSNs)的节点定位问题,并针对APIT由于锚节点在低密度环境下的节点误判和节点失效等问题给出了改进,在APICT定位算法的基础提出了联合分步定位算法UNION-APICT(Union Approximate Point-In-Circumcircle Test),该算法是结合连通性的测距技术,RSSI测距技术以及质心定位和APICT等技术,来联合解决对未知节点定位问题。通过仿真实验结果表明,改进后的UNION-APICT在APICT算法的基础之上平均定位误差减少了10%-25%,定位性能有了明显的提升;随着通信半径R和最大探测距离rmax的增加,定位误差也在逐渐减小,该算法较APIT和APICT定位算法在锚节点密度、节点覆盖率和定位精度上都有所提高。  相似文献   

9.
Common efficient schemes for the incompressible Navier–Stokes equations, such as projection or fractional step methods, have limited temporal accuracy as a result of matrix splitting errors, or introduce errors near the domain boundaries (which destroy uniform convergence to the solution). In this paper we recast the incompressible (constant density) Navier–Stokes equations (with the velocity prescribed at the boundary) as an equivalent system, for the primary variables velocity and pressure. equation for the pressure. The key difference from the usual approaches occurs at the boundaries, where we use boundary conditions that unequivocally allow the pressure to be recovered from knowledge of the velocity at any fixed time. This avoids the common difficulty of an, apparently, over-determined Poisson problem. Since in this alternative formulation the pressure can be accurately and efficiently recovered from the velocity, the recast equations are ideal for numerical marching methods. The new system can be discretized using a variety of methods, including semi-implicit treatments of viscosity, and in principle to any desired order of accuracy. In this work we illustrate the approach with a 2-D second order finite difference scheme on a Cartesian grid, and devise an algorithm to solve the equations on domains with curved (non-conforming) boundaries, including a case with a non-trivial topology (a circular obstruction inside the domain). This algorithm achieves second order accuracy in the L norm, for both the velocity and the pressure. The scheme has a natural extension to 3-D.  相似文献   

10.
In this paper, a multigrid method based on the high order compact (HOC) difference scheme on nonuniform grids, which has been proposed by Kalita et al. [J.C. Kalita, A.K. Dass, D.C. Dalal, A transformation-free HOC scheme for steady convection–diffusion on non-uniform grids, Int. J. Numer. Methods Fluids 44 (2004) 33–53], is proposed to solve the two-dimensional (2D) convection diffusion equation. The HOC scheme is not involved in any grid transformation to map the nonuniform grids to uniform grids, consequently, the multigrid method is brand-new for solving the discrete system arising from the difference equation on nonuniform grids. The corresponding multigrid projection and interpolation operators are constructed by the area ratio. Some boundary layer and local singularity problems are used to demonstrate the superiority of the present method. Numerical results show that the multigrid method with the HOC scheme on nonuniform grids almost gets as equally efficient convergence rate as on uniform grids and the computed solution on nonuniform grids retains fourth order accuracy while on uniform grids just gets very poor solution for very steep boundary layer or high local singularity problems. The present method is also applied to solve the 2D incompressible Navier–Stokes equations using the stream function–vorticity formulation and the numerical solutions of the lid-driven cavity flow problem are obtained and compared with solutions available in the literature.  相似文献   

11.
The application of two techniques for the of shape reconstruction of a perfectly two-dimensional conducting cylinder from mimic measurement data is studied in the present paper. After an integral formulation, the microwave imaging is recast as a nonlinear optimization problem; a cost function is defined by the norm of a difference between the measured scattered electric fields and the calculated scattered fields for an estimated shape of a conductor. Thus, the shape of conductor can be obtained by minimizing the cost function. In order to solve this inverse scattering problem, transverse electric (TE) waves are incident upon the objects and two techniques are employed to solve these problems. The first is based on an asynchronous particle swarm optimization (APSO) and the second is a dynamic differential evolution (DDE). Both techniques have been tested in the case of simulated mimic measurement data contaminated by additive white Gaussian noise. Numerical results indicate that the DDE algorithm and the APSO have almost the same reconstructed accuracy.  相似文献   

12.
The projection method is a widely used fractional-step algorithm for solving the incompressible Navier–Stokes equations. Despite numerous improvements to the methodology, however, imposing physical boundary conditions with projection-based fluid solvers remains difficult, and obtaining high-order accuracy may not be possible for some choices of boundary conditions. In this work, we present an unsplit, linearly-implicit discretization of the incompressible Navier–Stokes equations on a staggered grid along with an efficient solution method for the resulting system of linear equations. Since our scheme is not a fractional-step algorithm, it is straightforward to specify general physical boundary conditions accurately; however, this capability comes at the price of having to solve the time-dependent incompressible Stokes equations at each timestep. To solve this linear system efficiently, we employ a Krylov subspace method preconditioned by the projection method. In our implementation, the subdomain solvers required by the projection preconditioner employ the conjugate gradient method with geometric multigrid preconditioning. The accuracy of the scheme is demonstrated for several problems, including forced and unforced analytic test cases and lid-driven cavity flows. These tests consider a variety of physical boundary conditions with Reynolds numbers ranging from 1 to 30000. The effectiveness of the projection preconditioner is compared to an alternative preconditioning strategy based on an approximation to the Schur complement for the time-dependent incompressible Stokes operator. The projection method is found to be a more efficient preconditioner in most cases considered in the present work.  相似文献   

13.
We present a numerical algorithm for the solution of the Vlasov–Poisson system of equations, in the magnetized case. The numerical integration is performed using the well-known “splitting” method in the electrostatic approximation, coupled with a finite difference upwind scheme; finally the algorithm provides second order accuracy in space and time. The cylindrical geometry is used in the velocity space, in order to describe the rotation of the particles around the direction of the external uniform magnetic field.Using polar coordinates, the integration of the Vlasov equation is very simplified in the velocity space with respect to the cartesian geometry, because the rotation in the velocity cartesian space corresponds to a translation along the azimuthal angle in the cylindrical reference frame. The scheme is intrinsically symplectic and significatively simpler to implement, with respect to a cartesian one. The numerical integration is shown in detail and several conservation tests are presented, in order to control the numerical accuracy of the code and the time evolution of the entropy, strictly related to the filamentation problem for a kinetic model, is discussed.  相似文献   

14.
非线性体效应在计算机断层扫描重构的理论与应用中,仍然是一个悬而未决的问题。本文利用优化重构算法来解决非线性体效应,建立了离散非线性X射线投影变换模型,将X射线投影变换的逆问题变为一个非凸的优化问题,通过裁剪原用于求解凸优化问题的一阶原对偶算法,提出非线性迭代重构算法来解决非凸问题。通过构建成像系统模型对算法的收敛性和重构精度进行了模拟验证,模拟中重建的图像首先通过检验在极窄的显示窗口中显示小于1%的对比度,然后使用相对于真实图像的差异的l2范数进行定量分析。模拟结果表明,在计算精度范围内,非线性重构算法可以收敛到真实图像,而且对于图像衬度小于1%的细节,重构图像也可以显示出来。该研究结果可为设计有效补偿非线性体效应伪影的计算机断层扫描成像应用算法提供参考。  相似文献   

15.
利用双曲函数法得到ZKB方程的一组冲击波解,并对波在横向扰动下的动力学稳定性进行研究.对冲击波解进行线性稳定性分析,并构造高精度的有限差分格式求解所得本征值问题.结果表明:对于正耗散的情形,该冲击波在线性意义下稳定;对于负耗散情形,该冲击波在线性意义下不稳定.构造有限差分格式对受扰动的冲击波进行非线性动力学演化,结果表明:对于正耗散的情况,该冲击波是稳定的.  相似文献   

16.
This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers’ equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers’ equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.  相似文献   

17.
Numerical simulations of the four-field extended magnetohydrodynamics (MHD) equations with hyper-resistivity terms present a difficult challenge because of demanding spatial resolution requirements. A time-dependent sequence of r-refinement adaptive grids obtained from solving a single Monge–Ampère (MA) equation addresses the high-resolution requirements near the x-point for numerical simulation of the magnetic reconnection problem. The MHD equations are transformed from Cartesian coordinates to solution-defined curvilinear coordinates. After the application of an implicit scheme to the time-dependent problem, the parallel Newton–Krylov–Schwarz (NKS) algorithm is used to solve the system at each time step. Convergence and accuracy studies show that the curvilinear solution requires less computational effort than a pure Cartesian treatment. This is due both to the more optimal placement of the grid points and to the improved convergence of the implicit solver, nonlinearly and linearly. The latter effect, which is significant (more than an order of magnitude in number of inner linear iterations for equivalent accuracy), does not yet seem to be widely appreciated.  相似文献   

18.
In this paper, we present the development of a sharp numerical scheme for multiphase electrohydrodynamic (EHD) flows for a high electric Reynolds number regime. The electric potential Poisson equation contains EHD interface boundary conditions, which are implemented using the ghost fluid method (GFM). The GFM is also used to solve the pressure Poisson equation. The methods detailed here are integrated with state-of-the-art interface transport techniques and coupled to a robust, high order fully conservative finite difference Navier–Stokes solver. Test cases with exact or approximate analytic solutions are used to assess the robustness and accuracy of the EHD numerical scheme. The method is then applied to simulate a charged liquid kerosene jet.  相似文献   

19.
In the present work we derive and study a non-linear elliptic PDE coming from the problem of estimation of sound speed inside the Earth. The physical setting of the PDE allows us to pose only a Cauchy problem, and hence is ill-posed. However, we are still able to solve it numerically on a long enough time interval to be of practical use. We used two approaches. The first approach is a finite difference time-marching numerical scheme inspired by the Lax–Friedrichs method. The key features of this scheme is the Lax–Friedrichs averaging and the wide stencil in space. The second approach is a spectral Chebyshev method with truncated series. We show that our schemes work because of (i) the special input corresponding to a positive finite seismic velocity, (ii) special initial conditions corresponding to the image rays, (iii) the fact that our finite-difference scheme contains small error terms which damp the high harmonics; truncation of the Chebyshev series, and (iv) the need to compute the solution only for a short interval of time. We test our numerical schemes on a collection of analytic examples and demonstrate a dramatic improvement in accuracy in the estimation of the sound speed inside the Earth in comparison with the conventional Dix inversion. Our test on the Marmousi example confirms the effectiveness of the proposed approach.  相似文献   

20.
基于组播树的多粒度波带静态疏导算法   总被引:1,自引:0,他引:1  
研究了波带交换中的静态业务疏导算法。波带交换可以有效地减少波长交换的端口数量,但是当波带粒度值取固定值时,波带的粒度难以取得合适值。波带的粒度大,有助于减少交换端口的数量,但是波带利用率低;波带粒度小,有助于提高波带利用率,但是交换端口的数量多。为此,提出了多粒度的波带取值方法。根据静态业务疏导与组播路由的相似性,提出了利用构造组播树解决静态疏导问题的方法。另外,为了减少波带与波长交换平面互联的端口数量,采用了同目的地的波带疏导策略,并针对这一疏导策略提出了一种新的波带疏导辅助图。仿真结果表明,相对于固定粒度的波带取值,可以有效地减少交换端口的数量,并提高波带利用率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号