首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon fabric reinforced thermoplastic polyimide composites have significant applications in the field of tribology. However, there are relatively few studies that have been focused on the investigation of these materials. In the present study, carbon fabric/polyimide (CF/PI) composites, reinforced further with SiC nanoparticles, were prepared by dip-coating and hot press molding methods. Rockwell hardness and flexural testing of the composites were conducted. The friction and wear behavior of the resulting carbon fabric composites were evaluated in a ring-on-block contact mode under dry sliding condition. The results showed that the SiC nanoparticles significantly improved the hardness and flexural strength when compared to the CF/PI composites without the SiC additions. The CF/PI composites reinforced with 5 vol% SiC nanoparticles demonstrated the most beneficial mechanical and tribological properties compared to the composites with greater and lesser SiC nanoparticles. Scanning electron microscopy (SEM) and optical microscopy (OM) were employed in order to study the mechanism of tribological behavior. A continuous and thin transfer film formed during the friction test of the composites led to a significant improvement of the tribological properties.  相似文献   

2.
Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The friction and wear properties of polytetrafluoroethylene (PTFE) composites filled with differently surface treated carbon fibers, sliding against GCr15 steel under dry sliding condition, were investigated on a block-on-ring M-2000 tribometer. Experimental results revealed that RE treatment largely reduced the friction and wear of CF reinforced PTFE (CF/PTFE) composites. The RE treated composite exhibited the lowest friction and wear under dry sliding. Scanning electron microscopy (SEM) investigation of worn surfaces and transfer films of CF/PTFE composites showed that RE treated CF/PTFE composites had the smoothest worn surface under given load and sliding speed, and a continuous and uniform transfer film formed on the counterface. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the oxygen concentration was obviously increased after RE treatment, and more carboxyl groups were introduced onto CF surfaces after RE treatment. The increase in the amount of oxygen-containing groups increased the interfacial adhesion between CF and PTFE matrix, and accordingly increased the tribological properties of the composite.  相似文献   

3.
《Composite Interfaces》2013,20(4):337-346
Air-oxidation and ozone surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated conditions was investigated. Experimental results revealed that ozone treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of the carbon fiber surface showed that, after ozone treatment, oxygen concentration was obviously increased, and the amount of oxygen-containing groups on CF surfaces were increased greatly. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix, and large scale rubbing-off of PTFE was prevented; therefore, the tribological properties of the composite were improved.  相似文献   

4.
A series of composites with Twaron fabric as reinforcement and polytetrafluoroethylene (PTFE) as matrix were fabricated with various contents of PTFE, viz. 30, 40, 50, 60, and 70 vol%. The Rockwell hardness and tensile strength of the composites were tested according to the corresponding standards. The composites were also evaluated for their tribological behaviors on an MPX-2000A friction and wear tester. The worn surface and wear debris of the composites were observed by scanning electron microscopy (SEM) and the mechanism is discussed. The PTFE content in the composites had a great influence on both the mechanical and tribological properties. The composite with 40 vol% PTFE provided the proper wetting of the fibers and the best load transfer efficiency and, hence, showed the best mechanical properties and tribological behaviors.  相似文献   

5.
Carbon fabric reinforced polytetrafluoroethylene (PTFE) composites with different PTFE content, viz. 30, 40, 50, 60, and 70 vol%, were fabricated by a dispersion impregnation technique followed by a hot-press process. The composites were evaluated for their mechanical and tribological properties. The tribological tests were conducted on a friction and wear tester with a ring-on-block arrangement. The mechanical properties were also tested and their relationship with tribological properties was analyzed. The worn surface and wear debris were analyzed by a scanning electron microscope (SEM) to study the wear mechanism. It was found that the resin content had a great influence on both the mechanical properties and the tribological properties, and the tribological properties were correlated with the mechanical properties. The composite with 50 vol% PTFE showed promising tribological behaviors under the selected test conditions.  相似文献   

6.
Polyacrylonitrile (PAN)-based carbon fabric (CF) was modified with strong HNO3 oxidation and then introduced into polyimide (PI) composites. The friction and wear properties of the carbon fabric reinforced polyimide composites (CFRP), sliding against GCr15 stainless steel rings, were investigated on an M-2000 model ring-on-block test rig under dry sliding. Experimental results revealed that the carbon fiber surface treatment largely reduced the friction and wear of the CFRP. Compared with the untreated ones, the surface-modified CF can enhance the tribological properties of CFRP efficiently due to the improved adhesion between the CF and the PI matrix. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) study of the carbon fiber surface showed that the fiber surface became rougher and the oxygen concentration increased greatly after surface treatment, which improved the adhesion between the fiber and the PI matrix and improved the friction-reduction and anti-wear properties of the CFRP. An erratum to this article can be found at  相似文献   

7.
Multi-scale hybrid composite laminates of epoxy/carbon fiber (CF) reinforced with multi-walled carbon nanotubes (MWCNTs) were fabricated in an autoclave. For laminate fabrication, 0.5 wt% of pristine MWCNTs or silane-functionalized MWNCTs (f-MWCNTs) were dispersed into a diglycidyl ether of bisphenol-A epoxy system and applied on the woven carbon fabric. The neat epoxy/CF composite and the MWCNTs-reinforced epoxy/CF hybrid composites were characterized by thermogravimetric analysis (TGA), thermomechanical analysis (TMA), tensile testing, and field emission scanning electron microscopy (FE-SEM). A significant improvement in initial decomposition temperature and glass transition temperature of epoxy/CF composite was observed when reinforced with 0.5 wt% of f-MWCNTs. The coefficient of thermal expansion (CTE), measured by TMA, diminished by 22% compared to the epoxy/CF composite, indicating an improvement in dimensional stability of the hybrid composite. No significant improvement in tensile properties of either MWCNTs/epoxy/CF composites was observed compared to those of the neat epoxy/CF composite.  相似文献   

8.
25%, 50%, and 75% polyphenylene sulfide (PPS) long fiber reinforced PPS resin were prepared by a hot pressing method. Neat resin PPS and PPS fiber samples were also prepared to compare with the self-reinforced PPS composites. The reinforcing fibers were preheat treated at 240°C for 24 h. The tribological properties of the self-reinforced PPS composites against an AISI 1045 steel ring were determined by a block on ring type friction tester. Differential scanning calorimetry (DSC) results indicated that a higher degree of crystallinity was retained in the self-reinforced PPS composites than in neat PPS resin after hot pressing. Therefore, the addition of PPS fiber improved both the mechanical and tribological properties of PPS resin significantly. Dynamic mechanical analysis (DMA) demonstrated that the PPS fibers increased the glass transition temperature (Tg) of the PPS resin. SEM images of the fracture surfaces indicated that the toughness of the samples increased with increasing PPS fiber content. Additionally, PPS fibers improved the tribological properties of PPS resin by significantly reducing the friction coefficient and wear rate.  相似文献   

9.
Carbon fabric reinforced phenolic (CFRP) composites filled with nano-Al2O3 were prepared by a dip-coating and heat molding process and the tribological properties of the resulting composites under different sliding conditions were investigated systematically on a block-on-ring test rig. The worn surfaces were observed in a scanning electron microscope (SEM) to understand the mechanism. Nano-Al2O3 particles, as the filler, were effective in reducing the friction coefficient and wear rate of the CFRP composites. The steady state friction coefficient of the CFRP composites filled with 4 wt.% nano-Al2O3 particles was about 65.5% of that of unfilled CFRP composites, and the wear rate, in this case, was about 74.7% of that of unfilled CFRP composites. Tribological tests under different sliding conditions revealed that the filled CFRP composites seemed to be more suitable than unfilled CFRP composites for tribological applications under higher sliding speed and load. Moreover, the wear resistances of the unfilled and filled CFRP composites were found to be related to the stability of the transfer film on the counterface.  相似文献   

10.
Abstract

It is important to optimize the properties of a material for a particular application, hence, to find the suitable material for tribological applications, the wear and friction behaviour of AA5052 in situ composites with different kind of reinforcements have been investigated. For present study, three in situ formed composites have been produced with different reinforcements namely Al3Zr, ZrB2 and combination of both (Al3Zr + ZrB2) by direct melt reaction (DMR) technique. The as-cast composites and base alloy have been characterized by X-ray diffraction (XRD), optical microscopy, electron microscopy, tensile testing, hardness and dry sliding wear and friction tests. XRD results indicate the successful formation of second phase reinforcement particles in all composites. Wear test results indicate that the cumulative volume loss increases with an increase in sliding distance while coefficient of friction shows a fluctuating tendency, whereas with increasing applied load, wear rate shows an increasing trend while coefficient of friction shows decreasing trend. The variation of wear rate with composites indicates that the composite with multiple reinforcement (Al3Zr + ZrB2) has lowest wear rate among all as-cast composites and base alloy, while coefficient of friction is higher. The responsible mechanisms concerned with wear and friction results have been discussed in detail with the help of the observation on worn surface analysis by scanning electron microscope (SEM) and 3D-profilometer. All tribological results have been correlated with the microstructural properties, strength parameters and bulk hardness of the composites.  相似文献   

11.
Carbon fibers-reinforced polyimide composites (CF-PI) were fabricated by means of a hot press molding technique. To contrast the effects of ultraviolet and atomic oxygen irradiation under high vacuum on the tribological properties of CF-PI composites, the friction and wear properties of the composites sliding against GCr15 steel ball before and after irradiation were conducted in high vacuum on a ball-on-disk test rig. The experimental results revealed that CF-PI composites exhibited higher modulus and lower coefficient of friction and worn rate value than pure polyimide under high vacuum. However, the coefficient of friction of composites increased and the worn rate value decreased after ultraviolet or atomic oxygen irradiation, which slightly affected the tribological properties of CF-PI composites. The chemical composition of the composites changed after irradiation was inspected by X-ray photoelectron spectroscopy. Microstructure of the worn surfaces of the tested composites was investigated by scanning electron microscopy to reveal the wear mechanism.  相似文献   

12.
《Composite Interfaces》2013,20(5):515-526
Rare earth solution (RES) surface modification and air-oxidation methods were used to improve the interfacial adhesion of the carbon fiber reinforced polyimide (CF/PI) composite. The flexural property of the PI composites reinforced by the carbon fibers treated with different surface modification methods was comparatively investigated. Results showed that the flexural strength of CF/PI composite was improved after RES treatment. The improvement of impact and flexural property of the CF/PI composite was mainly due to the improvement in interfacial adhesion after RES treatment. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the oxygen concentration was obviously increased after RES treatment. The increase in the amount of organic functional groups increased the interfacial adhesion between CF and PI matrix.  相似文献   

13.
Interfacial modification for carbon fiber (CF) reinforced polyarylacetylene (PAA) resin, a kind of non-polar, was investigated. The high carbon phenolic resin was used as coating to treat the surface of CF after oxidation. Atomic force microscopy (AFM) with force modulation mode was used to analyze the interphase of composite. The interlaminar shear strength (ILSS) and mechanical properties of CF/PAA composites were also measured. It was found that the CF/PAA composites treated with oxidation and coating after oxidation had transition area between carbon fiber and PAA resin. The existence of transition area led to the improvement of interfacial performance of composites. Specially, the thickness and stiffness of interphase of composite treated with coating after oxidation were more suitable for CF/PAA composites. Thus, the composite treated with coating after oxidation had the highest value of ILSS and the best mechanical properties.  相似文献   

14.
Carbon fabric (CF) was pretreated by air-plasma bombardment and then further modified by deposition of polydopamine on the surface of the pretreated CF. Epoxy resin composites reinforced by unmodified or surface-modified carbon fabric were fabricated. The friction and wear behaviors of the resulting composites were evaluated in a ring-on-block contact mode. The flexural strength and Rockwell hardness of the composites were also evaluated. The morphologies of the worn surfaces of the unmodified and modified composites were analyzed by scanning electron microscopy. The surface treatment increased the surface roughness and changed the surface topography of the CF, which contributed to enhancing the interfacial adhesion of the composites and thus improved the mechanical properties and tribo-performance. The friction and wear properties of both the unfilled and filled composites were highly dependent on the load and sliding velocity. Moreover, the results were supplemented with scanning electron micrographs to help understand the possible wear mechanisms.  相似文献   

15.
The purpose of this study is to increase the interfacial properties in PMMA/carbon fiber (PMMA/CF) composites Graphene oxide (GO) and brached polyethyleneimine were coated onto the surface of carbon fiber by layer-by-layer assembly in this work. Compared with the origin PMMA/CF composite, the composites reinforced by PMMA/CF–GO showed significant enhancement in interFacial shear strength (IFSS). The improved fiber–matrix adhesion was proved by fracture morphology observation of scanning electron microscopy and almost unaffected mechanical properties of the fiber itself during the coating process. The optimal assembly time was found to be 10 for enhancing the overall composite mechanical performance.  相似文献   

16.
J. Li   《Current Applied Physics》2009,9(6):1445-1449
Blending polytetrafluorothylene (PTFE) to PA6 at different compositions was produced in a corotating twin-screw extruder where, PTFE acts as the polymer matrix and PA6 as the dispersed phase. The tribological properties of PTFE composites filled with PA6 under oil lubrication were investigated. The worn surface morphologies of neat PTFE and its composites were examined by scanning electron microscopy (SEM) and the wear mechanisms were discussed. The presence of PA6 particles dispersed in the PTFE continuous phase exhibited superior tribological characteristics to unfilled PTFE. The optimum wear reduction was obtained when the content of PA6 is 30 vol%.  相似文献   

17.
Abaca fibers show tremendous potential as reinforcing components in composite materials. The purpose of this study is to investigate the effect of abaca fiber content on physical, mechanical and tribological properties of abaca fiber reinforced friction composites. The friction composites were fabricated by a compression molder and investigated using a friction test machine. The experiment results show that surface treatment of abaca fibers could improve the mechanical properties of abaca fiber and interface bonding strength of the abaca fiber and composite matrix. Density of friction composites decreased with the increasing of abaca fiber content (0 wt%–4 wt%). The different content of abaca fibers had less effect on hardness of specimens, whereas large of impact strength. The specimen F3 with 3 wt% abaca fibers had the lowest wear rate and possessed the best wear resistance, followed by specimen F4 with 4 wt% abaca fibers. The worn surface morphologies were observed using the Scanning Electron Microscopy for study the tribological behavior and wear mechanism. The results show that a large amount of secondary contact plateaus presented on the worn surface of specimen F3 which had relatively smooth worn surface.  相似文献   

18.
《Composite Interfaces》2013,20(6):377-383
Divinylbenzene-grafted Ultra-high-molecular-weight polyethylene (UHMWPE) fibers were used to reinforce the Polytetrafluoroethylene (PTFE) composite and the friction and wear behaviors of UHMWPE/PTFE composite were studied on the ring-block machine under vacuum condition. The worn surfaces of specimens were investigated using scanning electron microscopy and energy dispersive spectroscopy (EDS). The results showed that the friction coefficient and temperature of UHMWPE/PTFE composites with surface-treated UHMWPE fiber were apparently lower than that with untreated one. In conclusion, the surface treatment favored the improvement of the higher interface strength and so had good effect on improving the tribological properties of the composites. The dominant wear mechanisms were adhesion wear, plastic deformation, brittle facture, and spalling. The EDS analysis of the worn surface indicated the trend of the tribochemical reaction of the Fe related to the transfer of the PTFE.  相似文献   

19.
In this study a series of polyimide (PI) films were synthesized from fluorinated and nonfluorinated monomers which contained diamines and dianhydrides. The influence of fluorine-containing groups on the glass transition temperature (T g) and tribological properties of the PI films was investigated. The wear mechanism for the different kinds of PI polymers was comparatively discussed. T g was characterized by dynamic mechanical analysis and the tribological changes were evaluated by friction and wear tests as well as scanning electron microscopy (SEM) analysis of the worn surfaces. Fourier transform infrared (FTIR) has been used to study the structures of the PI polymers. Experimental results indicated that the fluorine groups influenced the thermal behavior (T g) of the PI films. Nonfluorinated PI films have lower friction coefficient and wear rate compared with the fluorinated ones. It was also found that the tribological properties of the PI films were closely related with the applied load. The friction coefficients and wear rates reduced with increasing the applied load.  相似文献   

20.
In this study, the effect of TiC nanoparticles as a reinforcement on the mechanical and tribological properties of Aluminum-based self lubricating composite was investigated. The microstructure, relative density, hardness, and tribological properties of Al/graphite and Al/TiC/graphite composites were examined as a function of graphite content. The tribo-surfaces of the samples were analyzed using SEM and EDS elemental mapping. The results indicated that the addition of TiC nanoparticles not only decreased the wear rate and coefficient of friction of the composites, but also facilitated the formation of a stable graphite layer at longer sliding distances and high sliding velocities by forming a durable graphite/TiC composite on the tribo-surface. Therefore, the stability of graphite layer can be considered as a possible cause for decrease in wear rate of the Al/TiC/graphite composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号