首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microperforated panel (MPP) absorbers have been widely used in noise reduction and are regarded as a promising alternative to the traditional porous materials. However, the absorption bandwidth of a single-layer MPP is insufficient to compete with the porous materials. In order to improve the sound absorption ability of the single-layer MPP, a composite MPP sound absorber with membrane cells (MPPM) is introduced. Sound absorption properties of the MPPM are studied by the impedance tube experiment. Results show that the membranes have a significant influence on the sound impedance. The sound absorption performance of MPPM gradually increases with the increase of the membrane area. The single-layer MPP with some small area membrane cells may have the same effect and single large area membranes. By adjusting the size of the membrane cells, one can implement a sound absorber with a wider absorption bandwidth and higher absorption peaks than the single-layer MPP.  相似文献   

2.
An in situ measurement method is proposed for obtaining the normal surface impedance and absorption coefficient of porous materials using two microphones located close to the material without a specific sound source such as a loudspeaker. Ambient environmental noise that does not excite distinct modes in the sound field is employed as the sound source. Measurements of the normal surface impedance of glass wool and rockwool have been made using this method in various sound fields. The repeatability and wide applicability of the method are demonstrated by comparing results of measurements in one room with different noise conditions and in three other environments (corridor, cafeteria and terrace). The assumed diffuse nature of the sound field on the material is validated by using absorption characteristics obtained experimentally at oblique incidence. This method allows simple and efficient in situ measurements of absorption characteristics of materials in a diffuse field.  相似文献   

3.
Sound absorption of a periodic groove structure with rectangular profile is studied in this paper. On the basis of De Bruijn’s theory, by conducting matrix manipulation in MATLAB, a good prediction of the sound absorption of a periodic groove structure is obtained. Experiments in the Kundt’s tube are carried out and the results match the calculation well. This series of experiments and computation show that with the same period and the same ratio of absorber, groove structures have a much better sound absorbing ability than flat surface structures. Besides, a parametric survey has been done on the performance of the periodic groove structure and porous absorber as well. The parameters are the period of the surface, the ratio of the absorber, the depth of the groove, and the thickness, the flow resistivity, the open volume porosity and the structure factor of the porous absorber. Based on this survey, a periodic groove structure, as well as the porous absorber, with required sound absorbing capability can be created by arranging these parameters suitably.  相似文献   

4.
高声压级时多孔金属板的吸声特性研究   总被引:6,自引:0,他引:6  
彭锋  王晓林  孙艳  常宝军  刘克 《声学学报》2009,34(3):266-274
针对高声压级下有限厚度多孔金属板在线性阻抗背衬条件下(背衬表面声压与声质点速度为线性关系)的吸声问题,提出了一个描述不同声压级下材料层法向吸声性能的一维模型,并给出求解材料层内部声质点速度的线化与差分方法,以预测多孔金属板在高声压级下的非线性吸声特性。在阻抗管中对两块多孔金属板进行了声学测试,得到了材料层法向表面阻抗和吸声系数随入射声压级变化的实验结果。研究表明:实验与理论预测符合良好,验证了模型与数值方法的正确性。本文所提原理和方法,可用于一般硬质多孔材料。   相似文献   

5.
The absorption characteristics of elastic framed absorbers in combination with impervious films has been investigated. The effect of bonding the film to the absorber and the absorbers to their rear surface was examined. The results have been modelled using established methods for predicting the absorption of elastic framed porous materials. The absorption of a foam with a film bonded to its top surface was most sensitive to the rear surface bonding condition. Plain foams and foams with loose-laid surface films were less sensitive to the rear surface bonding condition. The results demonstrate that test data used to predict absorption performance need to reflect the absorber mounting conditions.  相似文献   

6.
提出一种多缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器,它由上表面金属图案层、基体和底层金属板三层结构组成,在上表面和基体之间嵌入二氧化钒介质.计算结果表明在f=4.08 THz和f=4.33 THz两频点吸收率分别为99.8%和99.9%.通过改变外界环境温度可控制二氧化钒相变,从而使两个频点吸收率从99.8%变化到1.0%.改变入射角和偏振态,计算结果表明在入射角0°-40°,吸收器在TE和TM两种极化波下吸收率都能在98%以上.该太赫兹波吸收器具有高吸收、动态调谐、极化不敏感等特性,本文所设计的可调太赫兹吸收器在太赫兹波相关领域,例如探测器、开关、动态调制器、隐身技术等方面具有很好的应用前景.  相似文献   

7.
The absorption coefficient of acoustic materials can be measured either in the frequency or the time domain. At normal incidence, a sample of the material is fitted within an impedance tube and the absorption coefficient is calculated in the frequency domain from the measurement of the transfer function between two microphones [ISO 10534-2. Acoustics - determination of sound absorption coefficient and impedance in impedance tubes - Part 2: transfer function method. ISO, Geneva, Switzerland; 1996]. When the acoustic material must be characterized at oblique incidence or in situ (noise barriers, for instance) the absorption coefficient is calculated from measurements of the loudspeaker-microphone impulse response in the time domain, both in free field and in front of the sample [CEN/TS 1793-5. Road traffic noise reduction devices - test method for determining the acoustic performance - Part 5: intrinsic characteristics - in situ values of sound reflection and airborne sound insulation. CEN, Brussels, Belgium; 2003, ISO 13472-1. Acoustic measurement of sound absorption properties of road surfaces in situ - Part I: extended surface method. ISO, Geneva, Switzerland; 2002]. Since the absorption is an intrinsic property of the acoustic material, its measurement in either domain must provide the same result. However, this has not been formally demonstrated yet. The aim of this paper is to carry out a comparison between the absorption coefficient predicted by the impedance model of a Microperforated Insertion Unit and the absorption coefficient predicted from a simulated reflection trace taken into account the finite length of the time window.  相似文献   

8.
顾超  屈绍波  裴志斌  徐卓  刘嘉  顾巍 《中国物理 B》2011,20(1):17801-017801
This paper reports the design of a multiband metamaterial (MM) absorber in the terahertz region. Theoretical and simulated results show that the absorber has four distinct and strong absorption points at 1.69, 2.76, 3.41 and 5.06 THz, which are consistent with `fingerprints' of some explosive materials. The retrieved material parameters show that the impedance of MM could be tuned to match approximately the impedance of the free space to minimise the reflectance at absorption frequencies and large power loss exists at absorption frequencies. The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector: the wave is first trapped and reinforced in certain specific locations and then consumed. This multiband absorber has applications in the detection of explosives and materials characterisation.  相似文献   

9.
This paper investigates the potential of active absorbers for reducing low-frequency noise transmission through an enclosure. Active absorbers are intended to obtain a purely real prescribed impedance at the front face of a porous layer. This is achieved by an active control system which cancels the acoustic pressure at the rear face. The test bench was a simplified enclosure: a rigid-wall cavity coupled to a baffled elastic plate. The modeling of the system was based on an analytical modal approach. The purpose of this simulation was first to calculate the optimal impedance, providing maximal reduction in radiated power, and then to define a sub-optimal strategy for actual absorber production. Two 3-cell configurations were implemented on the test bench. Active control used a multichannel feedforward algorithm. In line with prediction, the absorbers provided a 5.5 dB overall reduction while covering only 2% of the cavity surface.  相似文献   

10.
A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake noise. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. However, the accurate measurement of the wall impedance of a porous woven hose is not easy because of its peculiar acoustical and structural characteristics. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement setup, and, as a result, it is very simple. A variation of the proposed method, an inverse estimation method using one of the four-pole parameters is also proposed. An error sensitivity analysis was performed to investigate the effect of measurement error on the accuracy of the final result. The measured TL for samples with arbitrary lengths and arbitrary porous frequency are in reasonably good agreement with values predicted from curve-fitted impedance data.  相似文献   

11.
Low-frequency duct noise reduction using stiff light composite panels is developed and tested. Since these composite panels are made of lightweight and stiff materials, this actuation strategy will enable the creation of composite panels for duct noise control without using traditional heavy structural mass. The results suggest that the mass-spring resonance absorption in the case of a comparatively stiff thick panel with a thin flexible plate is more efficient with minimum weight, verifying that when subjected to low-frequency (<500 Hz). The efficiency of the panel absorber depends on the mass of the thin flexible plate and the stiffness of the panel.  相似文献   

12.
顾超  屈绍波  裴志斌  徐卓 《中国物理 B》2011,20(3):37801-037801
This paper reports the design of a metamaterial absorber with direction-selective and polarisation-insensitive property.Both theoretical and simulated results reveal that the absorber has a distinct absorption point with direction selectivity at 7.48 GHz,which is related to the resonance of the metamaterial and is not influenced by the polarisation.The retrieved impedance indicates that the impedance of the absorber can be tuned to approximatively match the impedance of the free space on one side and not to match the impedance of the free space on the other side.This design can result in the minimal reflectance,the minimal transmission and the highest absorbance at the absorption frequency.The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector:the wave is first trapped and reinforced in certain specific locations,and then mostly consumed.The distribution of the surface current is consistent with the design,the retrieved impedance and the distribution of the power loss.This absorber may have applications in many scientific and technological areas.  相似文献   

13.
The paper presents a systematic study of acoustic and non-acoustic properties of consolidated porous samples of expanded clay granulates. The effect of the particle size on the acoustic performance of consolidated expanded clays is investigated experimentally and theoretically. This work involves a comparison of the measured and predicted values of the absorption coefficient and normalised acoustic surface impedance data. It is demonstrated that the values of tortuosity and standard deviation in the pore size distribution do not depend significantly on the size of the material aggregate. An empirical expression which links the flow resistivity of the consolidated granular mix has been derived from the measured data. These results pave the way for the development of a simple practical model which will be able to link the acoustic properties of a consolidated granular mix with the characteristic particle dimension and the porosity data. These materials are structurally robust and easy to integrate in buildings and highway structures to control the levels of environmental noise and improve the acoustic quality of spaces.  相似文献   

14.
液体火箭发动机中声腔抑制不稳定燃烧的声学分析   总被引:5,自引:0,他引:5       下载免费PDF全文
发展了声腔的分析和数值模型,对液体火箭发动机不稳定燃烧的抑制作用进行了评定,通过迭代计算研究了二维流动和温度分布变化对声腔调 谐和稳定性能的影响,对不同的声腔几何尺寸和温度梯度的稳定性计算结果表明,燃烧带有较大开口面积的声腔会更大程度地改变振荡的空间分布,这种改变而且影响了驱动和抑制燃烧的机理,讨论了在声腔设计安排中正确选择声腔的几何尺寸,且比较了不同长度和不同直径声腔的阻尼特性,通过考察声吸收系统的方法来最优化系统的阻尼,得到了可供设计参考的结论。  相似文献   

15.
The complementary strengths and weaknesses of passive and active noise control (ANC) methods have motivated many researchers to develop hybrid noise absorbers that integrate both control strategies. The impedance matching technique (IMT) is the most effective for such a purpose. An unsolved problem with available IMT schemes is the a priori reference signal that limits IMT applications. This study proposes the use of the forward wave, available by the two-microphone method, as the reference signal. Due to inevitable errors in wave separation and inlet reflection of the control signal, the absorber becomes a feedback system. A simple and stable ANC is developed for impedance matching without the a priori reference signal. The proposed absorber has an absorption coefficient of 0.9 or above in a frequency range of 60-850 Hz. It is stable in the presence of sensor mismatch and robust with respect to significant variation of inlet boundary conditions.  相似文献   

16.
A theoretical method for calculating the absorption coefficient of the multi-layer absorbers composed of perforated plates, airspaces and porous materials is proposed. Initially, for multi-layer absorbers composed either of perforated plates and airspaces or perforated plates and porous materials, the acoustic impedance is calculated using an electro-acoustic analogy. Then, for multi-layer absorbers composed of perforated plates, airspaces and porous materials, the acoustic impedance is calculated using an iterative method. Finally, theoretical calculations for the absorption coefficient of three types of multi-layer absorbers composed of different materials and including perforated plates are carried out. The results are validated by experimental results.  相似文献   

17.
A broadband and thin-layer microwave absorber is designed based on surface pattern design made by carbonyl iron and rubber composite. The bandwidth with reflection less than −10 dB covers the full X-band owing to two absorption peaks appeared simultaneously in both the simulation results and experimental results. In this work, the power loss and power flow diagram were present by CST simulation, which clearly explain the broadband absorption caused by double λ/4 matching absorption and interfacial scattering synergistic effect. A facile splicing method was provided to extend the absorption bandwidth for the magnetic absorbing materials.  相似文献   

18.
The traditional Micro-perforated plate (MPP) is a kind of clean and non-polluting absorption structure in the middle and high frequency and has been widely used in the field of noise control. However, the sound absorption performance is dissatisfied at low frequencies when the air-cavity depth is restricted. In this paper, a mechanical impedance plate (MIP) is introduced into the traditional MPP structure and a Helmholtz resonator is attached to the MIP. Mechanical impedance plate (MIP) provides a good absorption at low frequency by using mechanism of mechanical resonance and the acoustic energy is dissipated in the form of heat with viscoelastic material. Helmholtz resonator can fill in the defect of the poor absorption effect between the Micro-perforated plate (MPP) and the mechanical impedance plate (MIP). The acoustic impedance of the proposed sound absorber is investigated by using acoustic electric analogy method and impedance transfer method. The influence of the tube’s length of Helmholtz resonator and the number of Helmholtz resonator on the sound absorption is studied. The corresponding results are in agreement with the theoretical calculation and prove that the composite structure has the characteristics of improving the low frequency sound absorption property.  相似文献   

19.
古林强  王英文 《应用声学》2014,33(2):167-176
为解决小房间的音质设计问题,需要设计不同的扩散吸声体。利用共振吸声的边缘效应,通过不同共振频率的共振器耦合共振时的非线性声阻抗变化组合,形成既能高效吸声,又能均匀散射的声学界面。数值分析及实验结果表明,新型的扩散吸声体内部没有任何传统吸声材料的情况下,单位面积吸声量在中低频段可达1.3 m2,在高频段由于非线性声阻抗与共振器的辐射阻抗不匹配影响,相应吸声量降低到0.7 m2左右。耦合声阻抗的运用使得新型扩散吸声体吸声的效率高,频带宽,免去传统吸声材料的使用,在小房间的声学应用中具有突出的优势。  相似文献   

20.
微穿孔板吸声器的吸声频带相较于亥姆霍兹谐振器更宽,但其低频吸声的实现需要较大的空气背腔,这对结构尺寸有限制的场合存在一定局限性。本文设计了一种轻薄吸声降噪结构(内置亥姆霍兹谐振器的微穿孔板吸声器,简称MPPHR),将微穿孔板吸声器与亥姆霍兹谐振器进行了结合,提升吸声器的低频吸声性能的同时兼具了微穿孔板宽带吸声的优点。首先基于微穿孔板和亥姆霍兹谐振器理论建立了等效电路模型并计算了结构的声阻抗。然后通过有限元对MPPHR的吸声特性进行了参数研究。最后验证了MPPHR的声阻抗模型和有限元仿真的准确性。研究结果表明:MPPHR结构拥有更宽吸声频带,厚度仅为30mm的MPPHR的半吸收频带可达1294Hz,相较于同等厚度下的微穿孔板吸声器宽近500Hz。此外,MPPHR拥有更好的低频吸声效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号