首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vanadium oxide thin films are the potential candidates for uncooled microbolometers due to their high temperature coefficient of resistance (TCR) at room temperature. A 2D array of 10-element test microbolometer without air-gap thermal isolation structure was fabricated with pulsed laser deposited vanadium oxide as IR sensing layer for the first time. Infrared responsivity of the uncooled microbolometer was evaluated in the spectral region 8-15 m. The device exhibits responsivity of about 12 V/W at 30 Hz chopper frequency for 20 A bias current. Thermal time constant (), Thermal conductance (G) and thermal capacitance (C) are the thermal parameters characterize the performance of the uncooled microbolometer infrared detectors are determined as 15 ms, 10-3 W/K and 3.5 × 10-5 J/K respectively. The influence of the thermal parameters on the performance of the microbolometer is discussed.  相似文献   

2.
Molybdenum oxide films (MoO3) were deposited on glass and crystalline silicon substrates by sputtering of molybdenum target under various oxygen partial pressures in the range 8 × 10−5–8 × 10−4 mbar and at a fixed substrate temperature of 473 K employing dc magnetron sputtering technique. The influence of oxygen partial pressure on the composition stoichiometry, chemical binding configuration, crystallographic structure and electrical and optical properties was systematically studied. X-ray photoelectron spectra of the films formed at 8 × 10−5 mbar showed the presence of Mo6+ and Mo5+ oxidation states of MoO3 and MoO3−x. The films deposited at oxygen partial pressure of 2 × 10−4 mbar showed Mo6+ oxidation state indicating the films were nearly stoichiometric. It was also confirmed by the Fourier transform infrared spectroscopic studies. X-ray diffraction studies revealed that the films formed at oxygen partial pressure of 2 × 10−4 mbar showed the presence of (0 k 0) reflections indicated the layered structure of α-phase MoO3. The electrical conductivity of the films decreased from 3.6 × 10−5 to 1.6 × 10−6 Ω−1 cm−1, the optical band gap of the films increased from 2.93 to 3.26 eV and the refractive index increased from 2.02 to 2.13 with the increase of oxygen partial pressure from 8 × 10−5 to 8 × 10−4 mbar, respectively.  相似文献   

3.
4.
The fabrication method and the pyroelectric response of a single element infrared sensor based lead zirconate titanate (PZT) particles and polyvinylidene fluoride P(VDF-TrFE) copolymer composite thick film is reported in this paper. A special thermal insulation structure, including polyimide (PI) thermal insulation layer and thermal insulation tanks, was used in this device. The thermal insulation tanks were fabricated by laser micro-etching technique. Voltage responsivity (RV), noise voltage (Vnoise), noise equivalent power (NEP), and detectivity (D*) of the PZT/P(VDF-TrFE) based infrared sensor are 1.2 × 103 V/W, 1.25 × 106 V Hz1/2, 1.1 × 10−9 W and 1.9 × 108 cm Hz1/2 W−1 at 137.3 Hz modulation frequency, respectively. The thermal time constant of the infrared sensor τT was about 15 ms. The results demonstrate that the composite infrared sensor show a high detectivity at high chopper frequency, which is an essential advantage in infrared detectors and some other devices.  相似文献   

5.
Low resistance nonalloyed Al-based ohmic contacts on n-ZnO:Al   总被引:1,自引:0,他引:1  
We have investigated the electrical properties of nonalloyed Al, Al/Au, and Al/Pt ohmic contacts on n-type ZnO:Al (2×1018 cm−3). All Al-based nonalloyed ohmic contacts on the n-ZnO:Al reveal linear current–voltage behavior with low specific contact resistivity of 8.5×10−4 (Al), 8.0×10−5 (Al/Au) and 1.2×10−5 Ω cm2 (Al/Pt), respectively. Using secondary ion mass spectroscopy (SIMS) and x-ray photoelectron spectroscopy (XPS) depth profiles, it was found that the O atoms in the ZnO:Al layer outdiffused to Al metal layer while the Al atoms indiffused to the surface region of ZnO:Al. This interdiffusion between Al and O atoms at room temperature results in an increase of doping concentration in the surface region of the ZnO:Al and reduces a specific contact resistivity of the Al-based ohmic contacts without thermal annealing process.  相似文献   

6.
The emergence of uncooled detectors has opened new opportunities for IR detection for both military and commercial applications. Development of such devices involves a lot of trade-offs between the different parameters that define the technological stack. These trade-offs explain the number of different architectures that are under worldwide development. The key factor is to find a high sensitivity and low noise thermometer material compatible with silicon technology in order to achieve high thermal isolation in the smallest area as possible. Ferroelectric thermometer based hybrid technology and electrical resistive thermometer based (microbolometer) technology are under development. LETI and ULIS have chosen from the very beginning to develop first a monolithic microbolometer technology fully compatible with commercially available CMOS technology and secondly amorphous silicon based thermometer. This silicon approach has the greatest potential for reducing infrared detector manufacturing cost. After the development of the technology, the transfer to industrial facilities has been performed in a short period of time and the production is now ramping up with ULIS team in new facilities. LETI and ULIS are now working to facilitate the IRFPA integration into equipment in order to address a very large market. Achievement of this goal needs the development of smart sensors with on-chip advanced functions and the decrease of manufacturing cost of IRFPA by decreasing the pixel pitch and simplifying the vacuum package. We present in this paper the technology developed by CEA/LETI and its improvement for being able to designs 384×288 and 160×120 arrays with a pitch of 35 μm. Thermographic application needs high stability infrared detector with a precise determination of the amount of absorbed infrared flux. Hence, infrared detector with internal temperature stabilized shield has been developed and characterized. These results will be presented. To cite this article: J.-L. Tissot, C. R. Physique 4 (2003).  相似文献   

7.
Intersubband transitions in quantum well have extremely large oscillator strengths and induce strong nonlinear effects in structures where inversion symmetry is broken, realized by growing AlGaAs quantum wells with asymmetrical A1 gradients. These compositionally asymmetrical multiquantum wells may thus be viewed as giant “quasimolecules” optimized for optimal nonlinearities in the mid infrared. Optical rectification as well as second harmonic generation have been measured in those structures using a continuous CO2 laser. At 10.6 μm the nonlinear coefficients are more than 3 orders of magnitude higher in these samples than for bulk GaAs (i.e. χ0(2) = 5.3 × 10−6m/V, χ2ω(2) = 7.2 × 10−7 m/V) and are in good agreement with theoretical predictions. We present more complex “pseudo-molecules” involving weakly coupled quantum wells. The optical rectification effects in these devices are so large χ0(2) = 1.6 × 10−3 m/V) that application to infrared detection may be envisioned.  相似文献   

8.
基于VO2薄膜非致冷红外探测器光电响应研究   总被引:3,自引:0,他引:3       下载免费PDF全文
VO2薄膜是非致冷微测辐射热红外探测器热敏电阻材料.研究中应用微电子工艺制备了VO2溅射薄膜红外探测器,在296K的环境中测试了该探测器在不同的直流偏置、光调制频率下对873K标准黑体源8—12μm红外辐射的光电响应以及器件的噪声电压,在10和30Hz的调制频率下其响应率分别大于17kV/W和接近10kV/W.该探测器实现了探测率D大于1.0×108cm (Hz)1/2/W,热时间常量为0.011s的8—12μm非致冷 关键词: 非致冷测辐射热探测器 红外探测器 二氧化钒 薄膜  相似文献   

9.
To support planetary studies of the Venus atmosphere, we measured line strengths of the 2v3, v1+2v2+v3, and 4v2+v3 bands of the primary isotopologue of carbonyl sulfide (16O12C32S), whose band centers are located at 4101.387, 3937.427, and 4141.212 cm−1, respectively. For this, infrared absorption spectra in normal carbonyl sulfide (OCS) sample gas were recorded at an unapodized resolution of 0.0033 cm−1 at ambient room temperatures using a Bruker Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory. The FTS instrumental line shape (ILS) function was investigated, which revealed no significant instrumental line broadening or distortions. Various custom-made short cells and a multi-pass White cell were employed to achieve optical densities sufficient to observe the strong 2v3 and the weaker bands in the region. Gas sample impurities and the isotopic abundances were determined from mass spectrum analysis. Line strengths were retrieved spectrum by spectrum using a non-linear curve fitting algorithm adopting a standard Voigt line profile, from which Herman–Wallis factors were derived for the three bands. The band strengths of 2v3, v1+2v2+v3, and 4v2+v3 of 16O12C32S (normalized at 100% of isotopologue) are observed to be 6.315(13)×10−19, 1.570(2)×10−20, and 7.949(20)×10−21 cm−1/molecule cm−2, respectively, at 296 K. These results are compared with earlier measurements and the HITRAN 2004 database.  相似文献   

10.
In this paper, we develop an integration technology between Si microlens and 256(H)×256(V) element PtSi Schottky-barrier infrared charge coupled device (IR-CCD) to improve the optical responsivity of CCD sensor. The refractive microlenses with the pixel size of approximately 28×28 μm2 is directly fabricated on the backside of CCD substrate to focus the incident irradiation onto the active area. For the integration device the fill factor is improved by a factor of 2.1. As a result, the IR-CCD image sensors operating at 77 K indicate an approximate 0.06–0.4 increase in relative optical responsivity in the spectral range of from 1 to 5 μm. CCD imaging quality with microlens has been improved comparing to that without microlens to a great extent.  相似文献   

11.
Microbolometers are extensively used for uncooled infrared imaging applications. These imaging units generally employ vanadium oxide or amorphous silicon as the active layer and silicon nitride as the absorber layer. However, using different materials for active and absorber layers increases the fabrication and integration complexity of the pixel structure. In order to reduce fabrication steps and therefore increase the yield and reduce the cost of the imaging arrays, a single layer can be employed both as the absorber and the active material. In this paper, we propose an all-ZnO microbolometer, where atomic layer deposition grown zinc oxide is employed both as the absorber and the active material. Optical constants of ZnO are measured and fed into finite-difference-time-domain simulations where absorption performances of microbolometers with different gap size and ZnO film thicknesses are extracted. Using the results of these optical simulations, thermal simulations are conducted using finite-element-method in order to extract the noise equivalent temperature difference (NETD) and thermal time constant values of several bolometer structures with different gap sizes, arm and film thicknesses. It is shown that the maximum performance of 171 mK can be achieved with a body thickness of 1.1 μm and arm thickness of 50 nm, while the fastest response with a time constant of 0.32 ms can be achieved with a ZnO thickness of 150 nm both in arms and body.  相似文献   

12.
Quasi-simultaneous laser action in the UV (0.337 μm) and the IR (10.6 μm) was observed from a pulsed laser with a sliding discharge plasma cathode. The laser operates at atmospheric pressure, with a gas mixture of CO2/N2/He, at a 0.26/0.50/4.0 lmin−1 flow rate. Output energies of 30 mJ in the IR and 0.35 mJ in the UV were obtained, from a laser discharge volume of 38.0×1.0×2.8 cm3. The optimum gas mixtures have been determined and the temporal behavior of the discharge parameters, the performance characteristics of the laser and the beam spatial distributions were investigated.  相似文献   

13.
The absorption spectrum of carbon dioxide in natural isotopic abundance has been investigated by CW-cavity ring down spectroscopy with a new setup based on fibred distributed feedback (DFB) laser diodes. By using a series of 25 DFB lasers, the CO2 spectrum was recorded in the 7123–7793 cm−1 region with a typical sensitivity of 3×10−10 cm−1. A 2125 transitions with intensities as low as 1×10−29 cm/molecule were detected and assigned to the 12C16O2, 16O12C17O and 16O12C18O isotopologues. For comparison, only 357 of them were previously reported from Venus spectra and 344 transitions were included in the 2004 version of the HITRAN database. The band by band analysis has led to the determination of the rovibrational parameters of 28, 2 and 6 bands for the 12C16O2, 16O12C17O and 16O12C18O isotopologue, respectively. While the uncertainty on the experimental line positions is on the order of 5×10−4 cm−1, the average deviation from the 12C16O2 calculated values provided by the most recent version of the carbon dioxide spectroscopic databank (CDSD) is −2.8×10−3 cm−1 with an root mean square (rms) deviation of 3.5×10−3 cm−1. Maximum deviations in the order of 0.02 and 0.12 cm−1 were evidenced for some bands of the 16O12C17O and 16O12C18O minor isotopologues. The obtained results improve significantly the previous measurements from Venus spectra and will be valuable to refine the sets of effective Hamiltonian parameters used to generate the CDSD database.  相似文献   

14.
Micromachined Uncooled IR Bolometer Linear Array Using VO2 Thin Films   总被引:2,自引:0,他引:2  
Mixed vanadium oxide thin films, as VO2 for the main composition are materials for uncooled microbolometer due to their high temperature coefficient of resistance (TCR) at room temperature. This paper describes the design and fabrication of 8-element linear array IR uncooled microbolometers using the films and micromachining technology. The characteristics of the array is investigated in the spectral region of 8–12 m. The fabricated detectors exhibit responsivity of up to 10 KV/W, typical detectivity of 1.89×108 cmHz1/2/W, and thermal time constant of 11 ms, at 296 K and at a frequency of 30 Hz. Furthermore, The uncorrected response uniformity of the linear array bolometers is less than 20%.  相似文献   

15.
In this paper, the integration of an experimental 32 × 32 uncooled IR microbolometer array with an unplanar CMOS Readout Integrated Circuit (ROIC) is presented. A vanadium oxide film fabricated by low temperature reactive ion beam sputtering is utilized as thermal-sensitive material in the bolometric detectors Before the integration, the unplanar ROIC for commercial use is first planarized by bisbenzocyclobutene film, then a electroless nickel-plating on ohmic contact areas is accomplished. Finally the bolometer array is fabricated using a micromachining process, which is completely compatible with CMOS technology. Measurements and calculations for the as-fabricated samples show that the responsivity of 1.4 × 104 V/W and the detectivity of 2.1 × 108cmHz1/2W–1 and a thermal response time of 10ms are obtained at a pulse bias of IV.  相似文献   

16.
The undoped and fluorine doped thin films are synthesized by using cost-effective spray pyrolysis technique. The dependence of optical, structural and electrical properties of SnO2 films, on the concentration of fluorine is reported. Optical absorption, X-ray diffraction, scanning electron microscope (SEM) and Hall effect studies have been performed on SnO2:F (FTO) films coated on glass substrates. The film thickness varies from 800 to 1572 nm. X-ray diffraction pattern reveals the presence of cassiterite structure with (2 0 0) preferential orientation for FTO films. The crystallite size varies from 35 to 66 nm. SEM and AFM study reveals the surface of FTO to be made of nanocrystalline particles. The electrical study reveals that the films are degenerate and exhibit n-type electrical conductivity. The 20 wt% F doped film has a minimum resistivity of 3.8 × 10−4 Ω cm, carrier density of 24.9 × 1020 cm−3 and mobility of 6.59 cm2 V−1 s−1. The sprayed FTO film having minimum resistance of 3.42 Ω/cm2, highest figure of merit of 6.18 × 10−2 Ω−1 at 550 nm and 96% IR reflectivity suggest, these films are useful as conducting layers in electrochromic and photovoltaic devices and also as the passive counter electrode.  相似文献   

17.
In this study, Cu (II) complex/n-Si structure has been fabricated by forming a thin organic Cu (II) complex film on n-Si wafer. It has been seen that the structure has clearly shown the rectifying behaviour and can be evaluated as a Schottky diode. The contact parameters of the diode such as the barrier height and the ideality factor have been calculated using several methods proposed by different authors from current–voltage (IV) characteristics of the device. The calculated barrier height and ideality factor values from different methods have shown the consistency of the approaches. The obtained ideality factor which is greater than unity refers the deviation from ideal diode characteristics. This deviation can be attributed to the native interfacial layer in the organic/inorganic interface and the high series resistance of the diode. In addition, the energy distribution of the interface state density (Nss) in the semiconductor band gap at Cu (II) complex/n-Si interface obtained from IV characteristics range from 2.15 × 1013 cm−2 eV−1 at (Ec  0.66) eV to 5.56 × 1012 cm−2 eV−1 at (Ec  0.84) eV.  相似文献   

18.
Uncooled pyroelectric infrared detectors based on ferroelectric single crystals 0.74Pb(Mg1/3Nb2/3)O3–0.26PbTiO3 (PMN–0.26PT) were fabricated. The performances of pyroelectric detectors dependence on detector fabrication temperature, absorption layer, and element thickness were compared. The room-temperature voltage responsivity (Rv) of 200 V/W and specific detectivity (D*) of 108 cm Hz1/2/W at 12.5 Hz have been achieved. The results reveal that the better pyroelectric response can be expected by controlling temperature below 70 °C during the fabrication of the pyroelectric detectors, selecting absorption layer with high absorption coefficient, and decreasing the thickness of the elements.  相似文献   

19.
With the increasing demand on infrared (IR) detectors for imaging harsh environment processes, widening the application range of uncooled microbolometer arrays has become an important research area. An efficient way of increasing this range is tuning the thermal conductance of the microbolometer array using electrostatic actuation, which is usually achieved by directly applying an actuation voltage to the substrate. However, this method does not allow pixel-by-pixel actuation, limiting the tunability. In this paper, we present a new method of actuation which uses the micromirror located below the microbolometer as the actuation terminal. We demonstrate that using micromirror actuation, the thermal conductance can be tuned by a factor of three. An analytical model to calculate the thermal conductance of this new type of microbolometer is presented. Results of the model are compared to finite element simulations and experimental measurements on a test structure fabricated for this purpose, showing good agreement. The new tuning mechanism provides a fairly linear thermal conductance tunability, thus making it a promising thermal conductance controlling mechanism for adaptive IR detectors.  相似文献   

20.
We report on various integration schemes of infrared microbolometers with microstrip antennas. The first integration design consists of two gold (Au) rectangular microstrip patches coupled along the radiating edges by a narrow niobium (Nb) strip. Devices using silicon oxide are compared to devices using amorphous silicon as antenna substrate. An extension of the twin-patch detector design is the microstrip dipole antenna-coupled microbolometer. Two ways of connecting the device to the contact pads via narrow dc leads are presented and compared. The contribution of the dc leads to the detector response is eliminated by directly connecting the dipole to the contact pads. The thermal isolation of the microbolometer from the silicon wafer is improved by incorporating air into the antenna dielectric substrate. This leads to higher detector responsivity and shifts the resonance towards longer antennas. The implementation of a bridge microstrip dipole antenna structure is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号