首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article presents the study of the electrochemical deposition of zinc oxide from the non-aqueous solution based on dimethyl sulfoxide and zinc chloride into the porous silicon matrix. The features of the deposition process depending on the thickness of the porous silicon layer are presented. It is shown that after deposition process the porous silicon matrix is filled with zinc oxide nanocrystals with a diameter of 10–50 nm. The electrochemically deposited zinc oxide layers on top of porous silicon are shown to have a crystalline structure. It is also shown that zinc oxide crystals formed by hydrothermal method on the surface of electrochemically deposited zinc oxide film demonstrate ultra-violet luminescence. The effect of the porous silicon layer thickness on the morphology of the zinc oxide is shown. The structures obtained demonstrated two luminescence bands peaking at the 375 and 600 nm wavelengths. Possible applications of ZnO nanostructures, porous and continuous polycrystalline ZnO films such as gas sensors, light-emitting diodes, photovoltaic devices, and nanopiezo energy generators are considered. Aspects of integration with conventional silicon technology are also discussed.  相似文献   

2.
ZnO nanostructures have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si(1 0 0) substrates without any catalyst and at atmospheric argon pressure. The influence of the source temperature on the morphology and luminescence properties of ZnO nanostructures has been investigated. ZnO nanowires, nanoflowres and nanotetrapods have been formed upon the Si(1 0 0) substrates at different source temperatures ranging from 1100 to 1200 °C. Room temperature photoluminescence (PL) spectra showed increase green emission intensity as the source temperature was decreased and ZnO nanowires had the strongest intensity of UV emission compared with other nanostructures. In addition, the growth mechanism of the ZnO nanostructures is discussed based on the reaction conditions.  相似文献   

3.
Progress has been achieved in the synthesis, structural characterization and physical properties investigation of nanostructures. We have focused our attention on zinc oxide nanostructures. We report on the growth of ZnO nanostructures using vapour phase technique. We have synthesized, depending on the growth conditions, different nanostructures such as wires and combs of zinc oxide. ZnO nanowires electrical properties have been characterised in presence of different gases, the results highlight remarkable response to acetone and ethanol with detection limits lower than 1 ppm. PACS 73.63.Bd; 74.78.Na  相似文献   

4.
Magnesium hydroxide nanostructures have been synthesized by the reaction of magnesium acetate with sodium hydroxide via sonochemical method. Reaction conditions such as the Mg2+ concentration, aging time and the ultrasonic device power show important roles in the size, morphology and growth process of the final products. The magnesium oxide nanoparticles have been prepared by calcination of magnesium hydroxide nanostructures at 400 °C. The magnesium hydroxide and magnesium oxide nanostructures were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermal gravimetric (TG) and differential thermal analyses (DTA).  相似文献   

5.
β-Ga2O3 nanostructures including nanowires, nanoribbons and nanosheets were synthesized via thermal annealing of gold coated GaAs substrates in N2 ambient. GaAs substrates with different dopants were taken as the starting material to study the effect of doping on the growth and photoluminescence properties of β-Ga2O3 nanostructures. The nanostructures were investigated by Grazing Incident X-ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray Spectroscopy, room temperature photoluminescence and optical absorbance. The selected area electron diffraction and High resolution-TEM observations suggest that both nanowires and nanobelts are single crystalline. Different growth directions were observed for nanowires and nanoribbons, indicating the different growth patterns of these nanostructures. The PL spectra of β-Ga2O3 nanostructures exhibit a strong UV-blue emission band centered at 410 nm, 415 nm and 450 nm for differently doped GaAs substrates respectively. A weak red luminescence peak at 710 nm was also observed in all the samples. The optical absorbance spectrum showed intense absorption features in the UV spectral region. The growth and luminescence mechanism in β-Ga2O3 nanostructures are also discussed.  相似文献   

6.
"采用电场辅助电化学沉积法,利用阳极氧化铝模板模板制备了高度择优取向的硫掺杂ZnO单晶纳米线.X射线衍射仪、隧道电子显微镜、选取电子衍射对所得样品的结构、形貌分析表明,所得纳米线是沿(101)择优取向的六方纤锌矿结构单晶纳米线,长约几十微米、平均直径约70 nm. X射线光电子能谱对化学组成的分析进一步证实掺杂硫原子的存在.用荧光光谱仪(PL)对S掺杂前后的ZnO纳米线进行光学特性测量发现,S掺杂较大地改变了ZnO纳米线的发光性质.在PL谱中,除了有典型的ZnO纳米线在378、392 nm处的强紫外发光峰  相似文献   

7.
The objective of this work is to investigate structural, morphological and optical properties of conventional CdSe/ZnS core–shell and inverted ZnS/CdSe core–shell nanostructures for opto-electronic device applications. For this purpose both nanostructures were synthesized using chemical bath deposition technique in thin film form. The structural properties were studied using X-ray diffraction technique with Rietveld refinement and transmission electron microscopy (TEM). The surface morphology of synthesized thin film was illustrated in the form 2D and 3D images using atomic force microscopy (AFM). The optical properties were explained using UV–Vis absorption spectroscopy and photo luminescence (PL) spectroscopy in in situ monitoring process. A comparison of estimated particle size from XRD, high resolution AFM and TEM images was resulted in good agreement as 2.1, 2.4 and 2.1 nm respectively for conventional CdSe/ZnS core–shell and as 2.5, 2.5 and 2.2 nm respectively for inverted ZnS/CdSe core–shell nanostructures.  相似文献   

8.
The Si L 2, 3 x-ray absorption near-edge structure (XANES) spectra of porous silicon nanomaterials and nanostructures with epitaxial silicon layers doped by erbium or containing germanium quantum dots are measured using synchrotron radiation for the first time. A model of photoluminescence in porous silicon is proposed on the basis of the results obtained. According to this model, the photoluminescence is caused by interband transitions between the energy levels of the crystalline phase and oxide phases covering silicon nanocrystals. The stresses generated in surface silicon nanolayers by Ge quantum dots or clusters with incorporated Er atoms are responsible for the fine structure of the spectra in the energy range of the conduction band edge and can stimulate luminescence in these nanostructures.  相似文献   

9.
Cadmium hydroxide/oxide nanocomposite material is synthesized by pulsed laser ablation of cadmium metal in double distilled water. As-synthesized cadmium hydroxide/oxide particles transforms into pure oxide after annealing at 350 °C for 9 h. As-obtained particles are spherical in shape with 15 nm average diameter, while spherical as well as rod shaped nanostructures are formed after annealing. PL spectrum of annealed powder has peaks corresponding to the defect levels rather than the band gap transitions.  相似文献   

10.
Isoelectronic (In, Al) doped gallium oxide nanowires have been grown by a vapour solidification process. XRD and TEM were used for their structural characterization. The morphology and optical properties of the In(Al)-doped Ga2O3 nanowires have been investigated by means of the secondary electrons and cathodoluminescence (CL) techniques in the SEM. Red and blue-UV emission bands appear as complex bands and their components are influenced by the presence of In or Al, leading to a blue-shift of the blue-UV band usually observed in undoped gallium oxide. These In and Al related changes in the luminescence features of doped Ga2O3 nanostructures are discussed.  相似文献   

11.
In this study, two different chemical solution methods were used to synthesize Zinc oxide nanostructures via a simple and fast microwave assisted method. Afterwards, the photocatalytic performances of the produced ZnO powders were investigated using methylene blue (MB) photodegradation with UV lamp irradiation. The obtained ZnO nanostructures showed spherical and flower-like morphologies. The average crystallite size of the flower-like and spherical nanostructures were determined to be about 55 nm and 28 nm, respectively. X-ray diffraction (XRD), scanning electronic microscopy (SEM), Brunauer–Emmett–Teller (BET), room temperature photoluminescence (RT-PL) and UV–vis analysis were used for characterization of the synthesized ZnO powders. Using BET N2-adsorption technique, the specific surface area of the flower-like and spherical ZnO nanostructures were found to be 22.9 m2/gr and 98 m2/gr, respectively. Both morphologies show similar band gap values. Finally, our results depict that the efficiency of photocatalytic performance in the Zinc oxide nanostructures with spherical morphology is greater than that found in the flower-like Zinc oxide nanostructures as well as bulk ZnO.  相似文献   

12.
Optical and electronic properties of crystalline silicon (c-Si) and amorphous silicon (a-Si) nanostructures are reviewed. The photoluminescence (PL) peak energies of c-Si and a-Si nanostructures are blueshifted from those of bulk c-Si and a-Si. The temperature dependence of the PL intensity is drastically improved in c-Si and a-Si nanostructures, and efficient luminescence from c-Si and a-Si nanostructures is observed at room temperature. The quantum confinement, spatial confinement, and surface effects on luminescence properties are summarized and the PL mechanism of silicon nanostructures is discussed.  相似文献   

13.
A simple method of thermal evaporation to fabricate micro and nanostructures of zinc oxide was presented. ZnO micro and nanostructures, prepared under different quantity of O2, were characterized by techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and analytical transmission electron Microscope. The SEM images indicated that the products prepared under the condition of sufficient O2 were needle-like microrods and the samples synthesized under the condition of deficient O2 were nanorods and nanowires with very high aspect ratio. The results of XRD and Raman shifts revealed that the ZnO micro and nanostructures synthesized under different quantity of O2 were both single crystalline with the hexagonal wurtzite structure. The HRTEM images indicated that the ZnO nanowire prepared under the condition of deficient O2 was single crystalline and grown along the direction of [0 0 1]. Photoluminescence measurement was carried out and it showed that the spectra of ZnO micro and nanostructures prepared under different quantity of O2 exhibited similar emission features. In addition, the growth mechanism of ZnO micro and nanostructures was preliminarily discussed.  相似文献   

14.
Zinc oxide, a transparent conducting oxide, has been synthesized in a novel route by application of continuous and pulsed mode ultrasonication. The powders prepared in this method are found to be nano particles of 24 and 20 nm respectively. The behaviour of two powders is found to be different when X-ray diffraction, photoluminescence, and Fourier transform infrared spectra were recorded. The thermo luminescence behaviour was also found to be different. It has been possible to incorporate H ion into the system by sonication process. Surface states created by sonication process are found to influence the photo and thermo luminescence of the system.  相似文献   

15.
One-dimensional (1D) tungsten oxide nanostructures show great potential for applications in the areas of batteries, photoelectrochemical water-splitting, electrochromic devices, catalysts and gas sensors. 1D tungsten oxide nanostructures are currently synthesized by physical or chemical vapor deposition, which are limited by low temperatures, the need for vacuum conditions, frequently expensive catalysts, and difficulty in scaling up for mass-production. These limitations, however, can be overcome by flame synthesis. Here, using a co-flow multi-element diffusion burner, we demonstrate the atmospheric, catalyst-free, rapid, mild and scalable flame synthesis of diverse, quasi-aligned, large density, and crystalline tungsten oxide nanostructures on a variety of substrates. Specifically, under fuel-rich conditions, monoclinic 1D W18O49 nanowires and nanotubes were grown on tungsten, iron, steel and fluorinated tin oxide (FTO) substrates, with controlled diameters ranging from 10 to 400 nm and axial growth rates ranging from 2 to 60 μm/h. Monoclinic 1D WO3 nanowires and nanotubes were grown, instead, on silicon and silicon dioxide substrates. Under fuel-lean conditions, diverse WO3 nanostructures, including monoclinic 1D nanowires, cubic 2D nanobelts and monoclinic 3D nanocones were grown on tungsten and FTO substrates. The success of this versatile flame synthesis method is attributed to the large tunability of several synthesis parameters, including the flame stoichiometry, the tungsten source and growth substrate temperatures, the tungsten oxide vapor concentration, and the material of the growth substrate. This flame synthesis method can be extended to synthesize other 1D transition metal oxides as well, enabling many large-scale electronic and energy conversion applications.  相似文献   

16.
Cauliflower-like ZnO nanostructures with average crystallite size of about 55 nm which have surface one dimensional (1D) nanoarrays with 10 nm diameter were successfully fabricated through a simple sonochemical route. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and room temperature photoluminescence (PL) characterizations were performed to investigate the morphological and structural properties of the obtained nanostructures. It has been shown that the synthesized cauliflower-like ZnO nanostructures irradiated UV luminescence and a green peak in visible band. Ultrasonic post-treatment of the particles for about 2 h increased the density of surface defects resulted in an increase in the green emission intensity.  相似文献   

17.
马海林  苏庆  兰伟  刘雪芹 《物理学报》2008,57(11):7322-7326
用热蒸发CVD法制备了β-Ga2O3纳米材料, 并用光致发光(PL)方法研究了其发光特性. X射线衍射分析显示, 产物为单斜结构的β-Ga2O3. 扫描电子显微镜测试表明: 在较小氧流量条件下制备的产物为β-Ga2O3纳米带, 宽度小于100nm, 长度有几微米; 较大氧流量时制备出β-Ga2O3纳米晶粒结构, 晶粒尺度在80—15 关键词: 光致发光 氧流量 纳米结构 2O3')" href="#">Ga2O3  相似文献   

18.
具有四角锥状纳米ZnO的制备及强蓝光发射特性   总被引:2,自引:0,他引:2       下载免费PDF全文
程文德  吴萍 《发光学报》2006,27(4):608-613
采用热蒸发锌(Zn)粉的方法在不同的氩气流量下制备了大量的四角锥状ZnO纳米材料。用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和光致发光(PL)谱对样品进行了形貌和发光特性分析。结果表明:合成的ZnO纳米材料受氩气流量影响较大,随着流量的增大,形貌由杂乱无章的结构(线状、块状、树枝状等)变成了均匀一致的四角锥结构,其发光特性随着生长过程中氧相对含量的减少,紫外光发射减弱、蓝光发射明显增强,说明氧空位是引起蓝绿光发射的主要原因。经700℃在空气中氧化处理后蓝绿光消失和氧化后的样品在700℃再经氢气还原处理后蓝绿光又重新出现的实验结果进一步证实了这个结论。本实验结果提供了支持纳米ZnO蓝光发射来自氧空位的实验证据,并初步探讨了四角锥状ZnO纳米结构的生长机理和强蓝光发射机制。  相似文献   

19.
This paper reports the pH-dependent growth of copper oxide (CuO) nanoparticles by wet chemical precipitation method using pH value of the samples as the only variable parameter. The phase purity, morphology, optical behavior, and elemental analysis of synthesized nanoparticles are shown to be critically dependent on the pH of the samples. Scanning electron microscope (SEM) results shows that a higher pH results well-defined CuO nanoflakes. X-ray powder diffraction (XRD) results disclosed that the growth of pure CuO with monoclinic structure at higher pH 8, whereas mixed phase was formed at lower pH 7. The average crystallite size of samples prepared at pH 8 to 10 was varying from 23.36 to 25.78 nm. The infrared spectroscopy showed that the O–H stretching peaks become narrow with an increase in the pH value. Optical results revealed the existence of the sharp absorption edges with precise excitonic features and photoluminescence bands both located at visible and near infrared spectral region attributed to the excellent optical behavior and narrow size distribution of particles. The additional near infrared band in photoluminescence spectrum located at 860 nm is attributed the defect-related luminescence. The growth mechanism of CuO nanostructures was discussed in the light of our findings.  相似文献   

20.
A simple template-directed wet chemistry route based on traditional thermal decomposition technique has been developed for the preparation of high-density, ordered ZnO nanowire arrays. The fabrication was performed at relative low temperature without involving complex procedures, sophisticated equipment and rigorous experiment conditions, thereby providing a straightforward and mild method to produce metal/metal oxide ordered nanostructures. The nanowire array system was evaluated by SEM, XRD, TEM and PL. A stable luminescence at 425 nm was present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号