首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
殷武  宋崇立 《发光学报》1991,12(4):325-333
本文用蒸发溶液法制备了Th(PO3)4、U(PO3)4及掺杂了U4+的Th(PO3)4:U4+单晶,确定了β-U(PO3)4属于正交晶系Cmca-D2h18点群,α-U(PO3)4和Th(PO3)4都为三斜晶系P1或P1点群,给出了它们的晶格参数.测量了U(PO3)4吸收谱,和Th(PO3)4基体中U4+的激发和荧光谱.在近紫外光激发下,Th(PO3)4:U4+产生一组荧光,对应于U4+离子的6d-5f电子跃迁.270和298nm的荧光寿命约10ns,对应于电偶极跃迁.在波长为553nm绿光激发下,Th(PO3)4:U4+中四价铀的电子产生上转换效应,释放出358和533nm窄带荧光、它们属于U4+的5f-5f电子跃迁,分别对应于3P2-3H4和1I5-3H4。给出了相应的荧光和上转换效应的跃迁能级图.  相似文献   

2.
采用高温固相法制备了一系列Tb~(3+)、Sm~(3+)和Tb~(3+)/Sm~(3+)掺杂的Ca_9Al(PO_4)_7荧光粉。采用X射线衍射技术、光谱及荧光寿命等手段表征了材料的性能。以Tb~(3+)的380 nm激发峰作为激发源时,发现Ca_9Al-(PO_4)_7∶Tb~(3+),Sm~(3+)的发射光谱中既包含Tb~(3+)的~5D_4-~7F_(6-3)跃迁发射,又含有Sm~(3+)的~4G_(5/2)-~6H_(5/2-9/2)跃迁发射。当增加Sm~(3+)的掺杂量时,基于Tb~(3+)-Sm~(3+)间的能量传递,有效地增加了Ca_9Al(PO_4)_7∶Tb~(3+),Sm~(3+)的发射强度,能量传递的机理是电偶极-电偶极相互作用。另外,Ca_9Al(PO_4)_7∶Tb~(3+),Sm~(3+)的量子效率可以达到50.6%。上述结果表明,Ca_9Al(PO_4)_7∶Tb~(3+),Sm~(3+)材料在紫外-近紫外白光LEDs领域具有一定的潜在应用价值。  相似文献   

3.
本文应用坩埚下降法技术在全密封铂金坩埚条件下生长了不同Pr~(3+)离子掺杂浓度的高质量LiLuF_4单晶.测定了单晶体从420 nm至500 nm的激发光谱.在446 nm光激发下,观察到单晶体480 nm(~3P_0→~3H_4)蓝色发射带、522 nm(~3P_1→~3H_5)绿色发射及605nm(~1D_2→~3H_4)的红色发射,其对应的平均寿命分别为38.5、37.3和36.8μs.其荧光寿命明显大于Pr~(3+)掺杂的氧化物单晶.同时研究了激发波长和掺杂浓度对发射强度以及色度坐标的影响.获得最佳的Pr~(3+)浓度为~0.5 mol%,并分析了环境温度从298 K到443 K变化对荧光强度的影响.结果表明随着温度的增加,荧光强度逐步变弱,其中~3p_0→~3H_4(480 nm)能级跃迁受温度影响最大,其次是~3p_1→~3H_5和~1D_2→~3H_4.  相似文献   

4.
采用了化学共沉淀法合成了一系列的镨、铽共掺杂的钼酸钙发光材料,研究了单掺Pr~(3+)和Tb~(3+)以及CaMoO4∶0.03Pr~(3+),yTb~(3+)共掺杂的浓度、温度对材料发光性能的影响。采用X射线衍射仪(XRD)和荧光光谱对样品进行了晶格结构、荧光性质表征。XRD分析表明:样品的主衍射峰与标准卡片(JCPDS 29-0351的衍射峰数据一致,说明少量Pr~(3+)掺杂没有改变基质晶格结构。荧光光谱分析表明,样品在275nm紫外光激发下,发射光谱主要包括多个发射峰,波长为488,560,621和652nm,分别对应于镨离子的~3P_0-~3H_4,~3P_0-~3H_5,~1D_2-~3H_4和~3P_0-~3F_2的跃迁,在掺杂量为3%时,样品特征发射峰最强,CaMoO4∶0.03Pr~(3+)和CaMoO4∶0.05Tb~(3+)的最佳煅烧温度分别为800和600℃。随着Pr~(3+)和Tb~(3+)掺入量的增加,CaMoO4∶Pr~(3+)发光材料的特征发射光谱和激发光谱的特征峰强度逐渐减小,而CaMoO4∶Tb~(3+)材料发光先减小后增大,存在着浓度猝灭效应。此外,在CaMoO4∶0.03Pr~(3+),yTb~(3+)发光体系中,Tb~(3+)的共掺杂可显著增强镨离子的特征发射峰,这是由于存在Tb~(3+)→Pr~(3+)的有效的能量传递。  相似文献   

5.
用高温固相法制备了Sr_7Zr(PO_4)_6∶Tb~(3+)、Sr_7Zr(PO_4)_6∶Ce~(3+)及Sr_7Zr(PO_4)_6∶Tb~(3+),Ce~(3+)一系列荧光粉,并通过X射线衍射仪及荧光光谱仪分析了其结构和发光性质。结果表明,Sr_7Zr(PO_4)_6∶Tb~(3+)呈现特征绿色发射,最强发射峰位于543 nm,属于Tb~(3+)的5D4→7F5跃迁,激发峰位于226 nm处,但激发带较窄。为拓宽其激发带的宽度,在Sr_7Zr(PO_4)_6∶Tb~(3+)中掺入了Ce~(3+),观察到掺入Ce~(3+)后激发带变宽,且在Ce~(3+)的激发波长处激发得到了Tb~(3+)的发射,表明存在Ce~(3+)到Tb~(3+)的能量传递。  相似文献   

6.
我们用分时荧光线窄化技术直接观察了Pr~(3 )∶LaF_3的光激发~3P_0态中的能量传递。研究了在5°K和40°K之间5克分子%样品的~3P_0-~3H_4共振跃迁过程对温度的依  相似文献   

7.
金叶  陈远豪  刘浩文  姚静 《发光学报》2019,40(2):159-163
采用高温固相法制备了Na_(8. 33)La_(1. 67)(SiO_4)_6O_2∶Eu~(3+)红色发光材料,利用X射线衍射仪测定其晶体结构,利用Hitachi F4600表征其发光光谱。在紫外光激发下,样品Na_(8. 33)La_(1. 67)(SiO_4)_6O_2∶Eu~(3+)呈多峰发射,分别对应于Eu~(3+)的~5D_0-~7F_j(j=0,1,2,3,4)能级跃迁,主峰是位于615 nm的~5D_0-~7F_2跃迁发射。研究了Eu~(3+)掺杂浓度对材料发光性质的影响,改变Eu~(3+)掺杂浓度,样品的发射强度随之改变,Na_(8. 33)La_(1. 67)(SiO_4)_6O_2∶Eu~(3+)材料的Eu~(3+)浓度为15%时,发光强度最大。讨论了浓度猝灭的机理,理论计算表明引起Eu~(3+)离子能量弥散的主要原因是离子间交换相互作用。  相似文献   

8.
CaMoO_4:Tb~(3+)发光材料的制备和发光性质的研究   总被引:1,自引:0,他引:1  
用共沉淀法制备了样品CaMoO_4:Tb~(3+)的前驱物,经TG-DTA测试表明:样品在850℃时有能量吸收峰,即达到样品反应的活化点。XRD谱图分析显示,焙烧后样品CaMoO_4:Tb~(3+)为CaMoO_4的白钨矿结构,但峰位发生了右移,说明晶体内部产生了微小的晶体缺陷,推测该缺陷可能是由晶胞内2个Tb~(3+)取代了3个Ca~(2+)形成空穴而引发的。通过对激发谱图的测试发现,此种缺陷结构有利于使MoO_4~(2-)发射特征峰(488 nm)的能量有效地传递给Tb~(3+),使Tb~(3+)的4f电子发生跃迁,特别使Tb~(3+)的~7F_6→~5D_4(488 nm)电子跃迁大大加强,因而在样品CaMoO_4:Tb~(3+)的发射谱图(λ_(ex)=488 nm)中,自激活荧光体MoO_4~(2-)的发射强度被大大减弱,而Tb~(3+)的~5D_4→~7F_5(544 nm)跃迁的绿光发光强度被大大增强,使该材料成为有潜在应用价值的发光材料。  相似文献   

9.
采用高温固相法合成Sr_3P_4O_(13):Ce~(3+),Tb~(3+)荧光粉,通过X射线衍射仪、扫描电子显微镜和荧光光谱仪分析该荧光粉的物相组成、颗粒形貌和发光性能。结果表明:Sr_3P_4O_(13):Ce~(3+)的发射光谱和Sr_3P_4O_(13):Tb~(3+)的激发光谱在300~400 nm有重叠;在近紫外光(290 nm)激发下,该荧光粉发射出Ce~(3+)的蓝光(300~420 nm)和Tb~(3+)的黄绿光(480~500 nm和530~560 nm);当Ce~(3+)的摩尔分数为0.08,Tb~(3+)的摩尔分数从0.01增大到0.09时,Ce~(3+)的4f→5d电子跃迁将能量传递至Tb~(3+)的~5D_3能级和~5D_4能级,Ce~(3+)的发光强度逐渐降低,Tb~(3+)的发光强度逐渐增强,表明Sr_3P_4O_(13)基质中存在Ce~(3+)→Tb~(3+)的能量传递;当掺杂Tb~(3+)的摩尔分数为0.09时,能量传递效率可高达86.46%;样品Sr_(2.61)P_4O_(13):0.24Ce~(3+),0.15Tb~(3+)的色坐标在绿光区域,因此Ce~(3+)和Tb~(3+)共掺杂的Sr_3P_4O_(13)荧光粉可作为绿色荧光材料应用于白色发光二极管。  相似文献   

10.
采用高温固相法通过掺杂不同种类的镧系元素以及改变掺杂元素的浓度制备了系列SrB_4O_7∶Re~(2+)(Re代表Ce,Nd,Gd和Lu)荧光材料,利用实验室自建的非偏振显微共聚焦荧光/拉曼测量系统重点研究了其荧光光谱特性。研究发现,SrB_4O_7∶Re~(2+)和SrB_4O_7∶Sm~(2+)具有相似的荧光特性,最强单峰对应~5 D_0-~7 F_0电子跃迁所产生的荧光峰(0-0峰),峰位为685.41nm;在700和730nm附近还对应有~5 D_0-~7 F_1和~5 D_0-~7 F_2电子跃迁所产生的两条强度较弱的荧光带;在相同条件下,SrB_4O_7∶Re~(2+)的0-0峰强度较SrB_4O_7∶Sm~(2+)的0-0峰强度至少要弱一个量级。对SrB_4O_7∶Re~(2+)荧光光谱分析结果显示,掺杂元素种类和掺杂元素浓度是影响荧光光谱强度的关键因素,两者直接决定了能参与发光的Re~(2+)离子的总量。  相似文献   

11.
为研究Yb~(3+)离子浓度变化对Tm~(3+)离子在蓝色波段荧光强度的影响,以NaF和La(NO_3)_3为原料,采用水热法制备了Tm~(3+)和Yb~(3+)共掺的Tm~(3+)/ Yb~(3+)∶LaF_3纳米颗粒.用X射线衍射对LaF_3纳米颗粒进行表征的结果显示,纳米晶体结构呈六方相.透射电镜的观测结果显示,纳米颗粒样品大小均匀、分散性良好.在波长为800 nm的激光激发下,观测到了上转换蓝光发射,其中包括波长为474 nm和479 nm的较强的荧光辐射(相应的跃迁为~1G_4→~3H_6)和波长位于450 nm的强度较弱的荧光发射(相应的跃迁为~1D_2→~3F_4).通过观测不同Yb~(3+)离子浓度条件下共掺Tm~(3+)/Yb~(3+)∶LaF_3样品的荧光光谱,研究了Yb~(3+)离子掺杂浓度对于Tm~(3+)离子的荧光发射的影响,并探讨了产生这种现象的原因.研究结果显示,对于~1G_4→~3H_6跃迁产生的荧光发射(474 nm),当Yb~(3+)离子浓度增大时,反向能量传递速率的增加导致了荧光强度的增大.然而,当Yb~(3+)离子浓度增大到一定程度时,Yb~(3+)离子激发态能级寿命的减少将引发荧光强度的下降.相比较而言,Yb~(3+)离子的浓度的变化对于~1D_2→~3F_4跃迁产生的位于450 nm处荧光强度的影响较弱.  相似文献   

12.
将Yb~(3+)作为协助发光的敏化剂,Tb~(3+)和Tm~(3+)作为发光中心的激活剂分别加入到基质氟化钇钠中,通过水热合成法分别制成不同掺杂浓度的NaYF_4:Yb~(3+)/Tb~(3+)和NaYF_4:Yb~(3+)/Tm~(3+)双掺杂氟化物纳米发光材料,并通过扫描电子显微镜、X射线衍射以及荧光光谱等手段分别对NaYF_4:Yb~(3+)/Tb~(3+)和NaYF_4:Yb~(3+)/Tm~(3+)双掺杂氟化物材料纳米颗粒的形貌及其发光特性进行了研究.实验结果表明:系列样品的X射线衍射图谱衍射峰与标准卡片吻合得很好,实验浓度范围内Yb~(3+)/Tb~(3+)和Yb~(3+)/Tm~(3+)共掺没有改变NaYF_4的晶体结构.实验得到了该材料在980 nm激光激发下的上转换发光光谱并分析了该材料的上转换发光机理,NaYF_4:Yb~(3+)/Tb~(3+)在980 nm激光激发的情况下出现的蓝光,绿光以及红光,分别对应于~5D_4→~7F_6、~5D_4→~7F_5、~5D_4→~7F_1的辐射跃迁;NaYF_4:Yb~(3+)/Tm~(3+)在980 nm光源激发下出现强的480 nm的蓝光,对应的是~1G_4→~3H_6的电子跃迁能级带,在660 nm强的红光发射谱带,对应的是~1G_4→~3F_4能级跃迁辐射光.  相似文献   

13.
采用传统的固相法成功合成了一系列α-Ba_3Y(BO_3)_3∶Dy~(3+)荧光粉,使用X射线衍射(XRD)、扫描电镜(SEM)、荧光光谱(FL)和寿命衰减曲线等对样品进行表征。结果表明:在近紫外/蓝光激发下,样品的发射光谱主要包含黄(577 nm)、蓝(488 nm)两个发射峰组成,分别对应电子跃迁~4F_(9/2)→~6H_(1 3/2)和~4F_(9/2)→~6H_(1 5/2)。最佳合成温度为1 100℃,该条件下合成的样品具有纯相、最大结晶度和最大发光强度。研究了荧光粉的浓度猝灭效应,猝灭机理主要是dipole-dipole interaction,同时exchange interaction无法忽略,临界摩尔分数为0.07。样品的寿命衰减曲线为二次指数型,这与Ba_3Y(BO_3)_3特有的晶格结构有直接关系。α-Ba_3Y(BO_3)_3∶Dy~(3+)荧光粉有应用于荧光转换型白光LED照明的潜力。  相似文献   

14.
朱革  李卓为  王闯  周发光  温艳  辛双宇 《中国物理 B》2017,26(9):97801-097801
To explore suitable single-phase white emission phosphors for warm white light emitting diodes, a series of novel phosphors Na_3MgZr(PO_4)_3:xDy~(3+)(0 ≤ x ≤ 0.03) is prepared, and their phase purities as well as photoluminescence properties are discussed in depth via x-ray diffraction structure refinement and photoluminescence spectrum measurement.The electronic structure properties of the Na_3MgZr(PO_4)_3host are calculated. The results reveal that Na_3MgZr(PO_4)_3 possesses a direct band gap with a band gap value of 4.917 e V. The obtained Na_3MgZr(PO_4)_3:Dy~(3+) phosphors are all well crystallized in trigonal structure with space group Rc, which has strong absorption around 365 nm and can generate warm white light emissions peaking at 487, 576, and 673 nm upon ultraviolet excitation, which are attributed to the transitions from ~4F_(9/2) to ~6H_(15/2),~6H_(13/2), and ~6H_(11/2) of Dy~(3+) ions, respectively. The optimal doping content, critical distance, decay time, and Commission International de L'Eclairage(CIE) chromaticity coordinates are investigated in Dy~(3+) ion-doped Na_3MgZr(PO_4)_3. The thermal quenching analysis shows that Na_3MgZr(PO_4)_3:Dy~(3+) has a good thermal stability, and the thermal activation energy is calculated. The performances of Na_3MgZr(PO_4)_3:Dy~(3+) make it a potential single-phase white emission phosphor for warm white light emitting diode.  相似文献   

15.
通过高温固相法制备出一系列新型上转换材料Sc_2(WO_4)_3∶Er~(3+)/Yb~(3+)。在980 nm激光激发下,Sc_2(WO_4)_3∶Er~(3+)/Yb~(3+)样品发出肉眼可见的强绿光。利用荧光光度计测得样品的发光光谱,在500~600 nm之间有强绿光发射,分别归因于Er~(3+)的~2H_(11/2)→~4I_(15/2)和~4S_(3/2)→~4I_(15/2)跃迁发射。在650~700 nm位置处,有对应于Er~(3+)离子~4F_(9/2)→~4I_(15/2)跃迁的较弱的红光发射。随着掺杂浓度的变化,样品的红绿分支比发生变化。当样品掺杂Er~(3+)浓度为0.05%、Yb~(3+)浓度等于0.1%时,样品发射的绿光强度是红光强度的27倍。另外,利用荧光强度比方法研究了Er~(3+)的两个热耦合能级在303~573 K范围内的发光温度特性。393 K时,样品的灵敏度达到最大为0.006 8 K~(-1)。对比于其他荧光粉材料,Sc_2(WO_4)_3∶Er~(3+)/Yb~(3+)的灵敏度处于较高水平,在实际测温中具有更好的应用前景。  相似文献   

16.
采用微波辐射法合成了一系列的Ca_(1-x)MoO_4∶x Dy~(~(3+))(0x≤0.12)和Ca_(0.98)(Mo O_4)_(1-1.5y)(PO_4)y∶0.02Dy~(3+)(0≤y≤0.10)黄绿色荧光粉,分别用X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)和荧光分光光度计对荧光粉的物相结构、微观形貌、发光特性进行了分析和表征。结果表明:所制得的CaMoO_4∶Dy~(3+)晶体结构与Ca Mo O4相似,为四方晶系、白钨矿结构。样品颗粒呈立方形,边长约为5μm,且是由尺寸约为120~540 nm的类球形小颗粒组成。样品的最大激发峰位于300 nm处。发射光谱由一系列尖峰组成,最强发射峰位于572 nm处,对应于Dy~(3+)的4F9/2→6H13/2跃迁,发光强度随Dy~(3+)浓度的增加先增大后减小,当Dy~(3+)摩尔分数为0.02时发光强度最大,而后随Dy~(3+)浓度的增加,发生了浓度猝灭效应。由Dexter浓度猝灭理论知,Dy~(3+)浓度猝灭主要为电偶极-电偶极相互作用和Dy~(3+)离子间交叉弛豫造成的。在254 nm波长激发下,Ca Mo O4∶Dy~(3+)的色坐标集中在黄绿光区域。此外,PO3-4的掺杂有效提高了CaMoO_4∶Dy~(3+)体系的发光亮度,PO_4~(3-)的最佳掺杂量为y=0.04,此时样品的发光强度比未掺杂样品提高了约19%。  相似文献   

17.
采用熔盐法制备了不同煅烧温度的NaY(MoO_4)_2∶Er~(3+)荧光粉材料,样品的晶体结构与微观形貌由X射线衍射仪和场发射扫描电镜测得。Er~(3+)掺杂的Na Y(MoO_4)_2纳米晶体的斯托克斯荧光发射光谱是在不同煅烧温度下测得的。NaY(MoO_4)_2∶Er~(3+)荧光粉材料的两个能级~2H_(11/2)-~4I_(15/2)和~4S_(3/2)-~4I_(15/2)跃迁的发射强度比随煅烧温度的增加而减小。NaY(MoO_4)_2∶Er~(3+)荧光粉材料的温度传感特性依赖于Er~3的两个热耦合能级~2H_(11/2)-~4I_(15/2)和~4S_(3/2)-~4I_(15/2)的发射强度。研究表明,在一个相对大的传感温度范围(303~573 K),600℃煅烧的样品的温度传感灵敏度比900℃煅烧的样品高,样品的温度传感灵敏度随煅烧温度的增加而减小,600℃煅烧的样品的温度传感灵敏度为1.36×10~(-2)K~(-1),比900℃煅烧的样品高76.6%。最后,解释了基于不同煅烧温度的温度传感灵敏度的物理机制。  相似文献   

18.
陈晓波  蔡青  王策 《物理学报》2004,53(12):4382-4386
报道了Pr(0.5):ZBLAN玻璃在双频双光束光源激发下的激发态上转换现象.发现上转换发射谱的荧光与常规荧光发射谱的荧光一致,还发现双频激发下的上转换激发谱有3个明显的谱峰,它们依此对应于788.5nm 1G4→3P2,850.5nm 1G4→1I6和805.0nm 3H6→1D2的激发态吸收跃迁,而大的850.5nm上转换激发谱峰是由大的1G4(Pr3+ )→1I6(Pr3+)跃迁的振子强度f=23.04×10-6所致.这说明起源于1G4能级的激发态吸收上转换尤其1G4(Pr3+)→1I6(Pr3+)  相似文献   

19.
利用高温固相法合成Na_2CaSiO_4:Sm~(3+),Eu~(3+)系列荧光粉末,研究了Sm~(3+)和Eu~(3+)掺杂对Na_2CaSiO_4晶体结构的影响、材料发光特性以及存在的能量传递现象.X射线衍射结果表明Sm~(3+)和Eu~(3+)单掺及共掺样品均为单相的Na_2CaSiO_4结构,晶体结构没有改变.Na_2CaSiO_4:Sm~(3+)荧光样品在404 nm激发波长下呈现峰峰值为602 nm的橙红色荧光,来源于~4G_(5/2)→~6H_(7/2)跃迁.Na_2CaSiO_4:Eu~(3+)荧光样品在395 nm激发波长下发射出峰峰值为613 nm的红色荧光.对光谱和荧光寿命的测试和分析结果表明Sm~(3+)与Eu~(3+)之间存在能量传递,通过理论计算得到Sm~(3+)和Eu~(3+)之间的能量传递临界距离为1.36 nm,相互作用形式为电四极-电四极相互作用.随着Eu~(3+)掺杂浓度的增加,能量传递效率也逐渐提高至20.6%.  相似文献   

20.
稀土掺杂LaGaO_3荧光粉因具有优良的发光性能、高的显色性和稳定性等优点而适合应用于场发射显示和LED器件中,其中, LaGaO_3∶Tb~(3+)发光强度和色纯度高于商用Y_2SiO_5∶Ce~(3+)荧光粉。通过共掺Sn~(4+)提高LaGaO_3∶Tb~(3+)荧光粉的发光性能使其更好地应用在白光LED中;利用高温固相法制备一系列LaGaO_3∶Tb~(3+)和LaGaO_3∶Tb~(3+),Sn~(4+)绿色荧光粉,并通过XRD和光致发光光谱分别对样品的晶体结构和发光性能进行表征。结果表明:掺杂Tb~(3+)和Sn~(4+)分别取代La~(3+)和Ga~(3+)进入到基质LaGaO_3的晶体结构中,并未出现其他杂相,形成纯相的荧光粉。样品的激发光谱均由位于231, 257和274 nm处的宽峰和位于300~500 nm锐利峰组成,其中, 231和274 nm分别对应于Tb~(3+)的4f-5d自旋允许跃迁(LS,~7F_6→~7D_J,ΔS=0)和自旋禁戒跃迁(~7F_6→~9D_J,ΔS=1); 257 nm归因于基质中GaO_6基团自激活光学中心的跃迁; 300~500 nm锐利峰归因于Tb~(3+)的f-f特征激发跃迁,如~7F_6→~5H_6,~5H_7,~5L_6,~5L_9,~5L_(10),~5G_9和~5D_4。相对于LaGaO_3∶Tb~(3+),共掺Sn~(4+)主要提高Tb~(3+)的4f-4f特征激发跃迁强度,主激发峰由Tb~(3+)的f-d跃迁变为f-f跃迁。在380 nm光激发下,样品LaGaO_3∶Tb~(3+)和LaGaO_3∶Tb~(3+),Sn~(4+)的发射光谱均由Tb~(3+)的特征跃迁~5D_4→~7F_6(487和493 nm),~5D_4→~7F_5(545 nm),~5D_4→~7F_4(584和589 nm)和~5D_4→~7F_3(622 nm)组成,其中,以~5D_4→~7F_5跃迁为主。样品LaGaO_3∶Tb~(3+)和LaGaO_3∶Tb~(3+),Sn~(4+)的CIE色坐标分别位于绿色区域(0.287 4, 0.545 9)和(0.279 7, 0.576 1);荧光寿命分别为1.63和1.38 ms;色纯度分别为54.81%和62.67%。共掺Sn~(4+)不仅没有影响发射峰的位置,而且提高了发射强度(提高近一倍),改变样品的浓度猝灭机理,由双极子-双极子(d-d)相互作用转变为双极子-四极子(d-q)相互作用。LaGaO_3∶Tb~(3+)和LaGaO_3∶Tb~(3+),Sn~(4+)中Tb~(3+)的最佳掺杂量分别为0.05和0.07; Sn~(4+)的最佳掺杂量为0.03,说明Sn~(4+)共掺提高Tb~(3+)的最佳掺杂量,有利于发光强度的提高。样品LaGaO_3∶0.05Tb~(3+)和LaGaO_3∶0.07Tb~(3+),0.03Sn~(4+)的光视效能(LER)分别为464和485 lm·W~(-1);内量子效率分别为21.8%和39.2%。随着温度的升高,由于热猝灭,样品LaGaO_3∶Tb~(3+),Sn~(4+)的发光强度逐渐下降;但在140℃时,发光强度仍可保持70%以上;通过Arrhenian公式计算,热活化能ΔE为0.169 0 eV,说明样品具有良好的稳定性。结果表明:LaGaO_3∶Tb~(3+),Sn~(4+)可作为绿色荧光粉实际应用于UV激发的白光LED器件中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号