首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We review the recently developed three-dimensional (3D) atom-superposition approach for simulating scanning tunneling microscopy (STM) and spectroscopy (STS) based on ab initio electronic structure data. In the method, contributions from individual electron tunneling transitions between the tip apex atom and each of the sample surface atoms are summed up assuming the one-dimensional (1D) Wentzel–Kramers–Brillouin (WKB) approximation in all these transitions. This 3D WKB tunneling model is extremely suitable to simulate spin-polarized STM and STS on surfaces exhibiting a complex noncollinear magnetic structure, i.e., without a global spin quantization axis, at very low computational cost. The tip electronic structure from first principles can also be incorporated into the model, that is often assumed to be constant in energy in the vast majority of the related literature, which could lead to a misinterpretation of experimental findings. Using this approach, we highlight some of the electron tunneling features on a prototype frustrated hexagonal antiferromagnetic Cr monolayer on Ag(111) surface. We obtain useful theoretical insights into the simulated quantities that is expected to help the correct evaluation of experimental results. By extending the method to incorporate a simple orbital dependent electron tunneling transmission, we reinvestigate the bias voltage- and tip-dependent contrast inversion effect on theW(110) surface. STM images calculated using this orbital dependent model agree reasonably well with Tersoff-Hamann and Bardeen results. The computational efficiency of the model is remarkable as the k-point samplings of the surface and tip Brillouin zones do not affect the computational time, in contrast to the Bardeen method. In a certain case we obtain a relative computational time gain of 8500 compared to the Bardeen calculation, without the loss of quality. We discuss the advantages and limitations of the 3D WKB method, and show further ways to improve and extend it.  相似文献   

2.
In this paper we simulate STM and STS experiments for CO monomers and dimers on Cu(1 1 1) surface. We show that the contrast of STM images can be attributed to interference effects between tunneling channels, and suggest that functionalizing the microscope tip improves the channel selectivity of STM. Furthermore, we show that voltage and position dependent tunneling spectra also reflect the same interference effects, but adds the energy resolution to the channel analysis. Especially in the case of nonresonant tunneling, STS measures local density of states only indirectly. The present study suggests that STS in constant height mode can be used in investigating the phase and energy sensitivity of tunneling channels in adsorbate molecules and nanostructures.  相似文献   

3.
Low temperature (down to 2.5 K) scanning tunneling microscopy (STM) and spectroscopy (STS) measurements are presented to assess the nature of the alpha-Sn/Ge(111) surface. Bias-dependent STM and STS measurements have been used to demonstrate that such a surface preserves a metallic 3 x 3 reconstruction at very low temperature. A tip-surface interaction mechanism becomes active below about 20 K at the alpha-Sn/Ge(111) surface, resulting in an apparent unbuckled (sqrt[3] x sqrt[3]) reconstruction when filled states STM images are acquired with tunneling currents higher than 0.2 nA.  相似文献   

4.
The fascinating many-body physics involved in the interaction of a single magnetic impurity with the conduction electrons of its nonmagnetic metallic host is reflected in unconventional phenomena in magnetism, transport properties and the specific heat. Characteristic low-energy excitations, termed the Kondo resonance, are generally believed to be responsible for this striking behaviour. However, in spite of an intense research for over more than 30 years, a direct spectroscopic observation of the Kondo resonance on individual magnetic adatoms withstood experimental efforts hitherto. The development of low-temperature scanning tunneling microscopes (STM) operating under ultrahigh vacuum (UHV) conditions has provided new opportunities for investigating locally the electronic structure at surfaces. At low temperatures, due to the reduced broadening of the Fermi level of the STM tip and the sample, rather high energy resolution (≤ 1 meV) in scanning tunneling spectroscopy (STS) is achievable. Moreover, the absence of diffusion together with the spatial resolution of the STM enables detailed studies of electronic states on and near single adsorbed atoms and other nanoscale structures. Recently, for the first time, two such STS/STM experiments spatially resolved the electronic properties of individual magnetic adatoms displaying the Kondo effect. In particular, the observed Fano lineshape of the Kondo resonance reveals unambiguously the details of the quantum mechanical interference between the localized orbital and the conduction electrons on an atomic length scale [1,2]. This achievement of the detection of individual magnetic atoms with atomic resolution opens new perspectives for probing magnetic nanostructures.  相似文献   

5.
Results are presented from a low-temperature scanning tunneling microscopy (STM) investigation of III-V semiconductor surfaces cleaved in situ along a (110) plane. The STM topographic images reveal the presence of surface charge structures. The possibility of their observation depends on the charge state of the apex of the STM tip. Peaks are also observed in the local tunneling conductivity spectra. The energy position of these peaks and the energy position of the edges of the band gap change with distance from the defect. A theoretical model is proposed which demonstrates that the experimental scanning tunneling spectroscopy (STS) data can be explained by effects due to a nonequilibrium electron distribution in the contact area, which gives rise to localized charges. In this model the on-site Coulomb repulsion of localized charges and their interaction with semiconductor electrons are treated self-consistently. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 4, 299–304 (25 August 1998)  相似文献   

6.
The theoretical studies presented in this paper concern the influence of the atomic structure of the tip on the tunneling of electrons between the tip and the sample in STM. This problem has been discussed for the system formed by Al(001) surface and aluminium tip, where different geometries of the tip were taken into consideration. The obtained results have shown how various geometries of the tip induce considerably different STM images of the surface.  相似文献   

7.
史强  朱清时 《物理学进展》2011,18(2):178-187
本文简要综述利用扫描隧道显微镜(STM)进行单原子操纵的物理机制。主要介绍了场增强的扩散、在表面上拖动(puling)推动(pushing)原子、原子在针尖表面间接触和近接触转移、场致蒸发/脱附、隧道电子非弹性射激发和电子迁移的“电子风力”等过程。同时介绍了一些理论处理方法和对一些实验结果的解释。  相似文献   

8.
The plasmon-enhanced light emission of rutile TiO_2(110) surface has been investigated by a low-temperature scanning tunneling microscope(STM). We found that the photon emission arises from the inelastic electron tunneling between the STM tip and the conduction band or defect states of TiO_2(110). In contrast to the Au(111) surface, the maximum photon energy as a function of the bias voltage clearly deviates from the linear scaling behavior, suggesting the non-negligible effect of the STM tip on the band structure of TiO_2. By performing differential conductance( dI/dV) measurements, it was revealed that such a deviation is not related to the tip-induced band bending, but is attributed to the image charge effect of the metal tip, which significantly shifts the band edges of the TiO_2(110) towards the Femi level(E_F) during the tunneling process. This work not only sheds new lights onto the understanding of plasmon-enhanced light emission of semiconductor surfaces, but also opens up a new avenue for engineering the plasmon-mediated interfacial charge transfer in molecular and semiconducting materials.  相似文献   

9.
Cleaved in air a-b surface of Bi2Sr2CaCu2O8 (BSCCO-2212) was measured by means of STM and STS at 4.2 K in liquid hellium bath. From fitting experimental conductivity curves by Dynes' function two superconductivity parameters (gap value) and (smearing parameter) were obtained. The shape of gap structure superimposed on dI/dV characteristics depends on tip-sample distance, what is expressed by the increase of and decrease of with shortening of s. The phenomenon of becoming gap structure more distinct when approaching the tunneling tip to the surface is explained by us as the non-vacuum tunneling, where the surface contamination layer on non-metallic BiO top-surface layer strongly influences the tunneling process. Only for s short enough tunneling electrons penetrate to deeper situated CuO layers and reflect their superconducting behaviour. Non-vacuum STM images are therefore sensitive to the tip-sample distance adjustment. The dependence of gap parameters on lateral position of the tip above the sample can also occur. In such cases STS enables to state which elements of the image belong to the topography of the surface and which to its electron density of states.  相似文献   

10.
Scanning tunneling microscopy (STM) is not only an excellent tool for the study of static geometric structures and electronic structures of surfaces due to its high spatial and energy resolution, but also a powerful tool for the study of surface dynamic behaviors, including surface diffusion, molecular rotation, and surface chemical reactions. Because of the limitation of the scanning speed, the video-STM technique cannot study the fast dynamic processes. Alternatively, a time-dependent tunneling current, I-t curve, method is employed in the research of fast dynamic processes. Usually, this method can detect about 1000 times faster dynamic processes than the traditional video-STM method. When placing the STM tip over a certain interesting position on the sample surface, the changing of tunneling current induced by the surface dynamic phenomena can be recorded as a function of time. In this article, we review the applications of the time-dependent tunneling current method to the studies of surface dynamic phenomena in recent years, especially on surface diffusion, molecular rotation, molecular switching, and chemical reaction.  相似文献   

11.
杨景景  杜文汉 《中国物理 B》2013,22(6):66801-066801
An Sr/Si(100)-c(2×4) surface is investigated by high-resolution scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). The semiconductor property of this surface is confirmed by STS. The STM images of this surface shows that it is bias-voltage dependent and an atomic resolution image can be obtained at an empty state under a bias voltage of 1.5 V. Furthermore, one-dimensional (1D) diffusion of vacancies can be found in the room-temperature STM images. Sr vacancies diffuse along the valley channels, which are constructed by silicon dimers in the surface. Weak interaction between Sr and silicon dimers, low metal coverage, surface vacancy, and energy of thermal fluctuation at room temperature all contribute to this 1D diffusion.  相似文献   

12.
利用STM和CV方法测定有机发光材料的能带参数   总被引:1,自引:0,他引:1       下载免费PDF全文
利用扫描隧道显微镜/扫描隧道谱(STM/STS)的技术,研究了有机发光材料Alq3、DPN-2CN和DNP-2CN的表面电子结构。将材料DPN-2CN和DNP-2CN的表面电子结构与Alq3的表面电子结构进行对比,判定了DPN-2CN和DNP-2CN的最低空轨道(LUMO)能级。通过电化学循环伏安(CV)法,对DPN-2CN和DNP-2CN的LUMO能级和最高占有轨道(HOMO)能级进行了表征。两种测试方法所得到的LUMO能级参数基本一致。  相似文献   

13.
The study of metallic carbonyl clusters as precursors in tailoring the heterogeneous metal catalysts has been of great importance. The catalytic nature of the adsorbed clusters in thin film form depends on the chemical properties of the substrate used. The metal-support interaction will determine various properties such as the surface morphology, adsorption features and the structural orientations. We report a scanning tunneling microscopy (STM) study of an osmium carbonyl cluster (Os3(CO)11(NCCH3)) adsorbed on highly oriented pyrolytic graphite (HOPG). STM measurements showed that the osmium carbonyl cluster interacts with HOPG in such a way that it adsorbs on the basal plane showing regular lattice structure, whereas the axial planes of the HOPG surface shows no ordered structure. The regular cluster lattice structure of the carbonyl cluster on the basal plane of the graphite has lattice parameters of a=1.4 nm and b=1.5 nm. We believe that the regular orientation of the cluster indicates a monolayer adsorption of the cluster on the graphite basal planes. Scanning tunneling spectroscopy (STS) measurements also indicated an insulating behavior for the cluster molecules on HOPG, with a significant energy gap value of ca. 300 mV. The cluster interaction at the active sites, i.e. axial planes of the graphite, was also observed by in situ STM measurements.  相似文献   

14.
利用扫描隧道显微镜研究了采用化学气相沉积法在铜箔表面生长出的高质量的六角氮化硼薄膜. 大范围的扫描隧道显微镜图像显示出该薄膜具有原子级平整的表面, 而扫描隧道谱则显示, 扫描隧道显微镜图像反映出的是该薄膜样品的隧穿势垒空间分布. 极低偏压的扫描隧道显微镜图像呈现了氮化硼薄膜表面的六角蜂窝周期性原子排列, 而高偏压的扫描隧道显微镜图像则呈现出无序和有序排列区域共存的电子调制图案. 该调制图案并非源于氮化硼薄膜和铜箔衬底的面内晶格失配, 而极有可能来源于两者界面处的氢、硼和/或氮原子在铜箔表面的吸附所导致的隧穿势垒的局域空间分布.  相似文献   

15.
Microscopic topological and spectroscopic properties of MBE-grown GaAs c(4×4) surfaces without and with monolayer Si deposition were investigated by the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Empty state STM images on as-grown surface showed bright and dark cells, and they exhibited strong correlation with the spatial distribution of normal and anomalous conductance gaps of the STS spectra. Bias dependent STM images indicated presence of pinning areas with continuous space and energy distribution of surface gap states. By deposition of monolayer Si, dark areas reduced a great deal and the rate of finding normal STS spectra increased, indicating large reduction of surface states.  相似文献   

16.
In spite of the huge potential of scanning tunneling microscopy (STM), a firm interpretation of experimental data is often difficult. Theoretical simulation of STM images andSTS spectra plays a very important role to derive detailed information from experiments. In the present article, a method of the first-principles simulation based on the local density functional approach is introduced, andapplied to some interesting surface systems. It is clarified how the atomistic structure of the tip influences the STM image. An example is presented in which a naive interpretation of the STM image fails. The exotic phenomenon of transparency of the adsorbed molecule is discussed.  相似文献   

17.
潘明虎  薛其坤 《物理》2002,31(12):800-804
自旋极化扫描隧道显微术是一种新兴的表面自旋分辨技术,文章主要介绍了自旋极化的扫描隧道显微镜和扫描隧道谱实现表面自旋分辨的原理以及在各种磁性表面研究中的应用,采用自旋极化技术的扫描隧道显微镜可以测量表面磁结构,其空间分辨可以达到原子尺度,分辨率超过其他磁显微技术,而自旋极化扫描隧道谱不但可以分辨空间精细磁畴结构,而且能研究表面态的交换劈裂,文章作者还进一步提出了利用自旋极化扫描隧道显微镜实现自旋注入的设想。  相似文献   

18.
Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.  相似文献   

19.
20.
We study the structure and the electronic properties of the (1 1 0) surfaces of magnetite Fe3O4 thin films by scanning tunneling microscopy (STM) and spectroscopy (STS). The STM images show a surface reconstruction consisting of ridges along the direction. Based on atomically resolved STM images we present a model for the observed ridge reconstruction of the surface, in agreement with a bulk-truncated layer containing both octahedral and tetrahedral iron ions. The metallic and semiconductor-like shapes of the measured current-voltage (I-V) curves indicate a non-uniform segregation of magnesium through the film. The weak contrast between the tops and valleys of ridges measured in the STS current maps is attributed to tetrahedral and octahedral coordination at the tops and the valleys, respectively. This attribution is in agreement with the proposed structure model. We observe a contrast enhancement at a tip change accompanied by a corrugation enhancement. This tip change is induced by picking up material from the sample, resulting in a magnetic tip. Thus, the contrast enhancement is attributed to detection of spin polarized current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号