首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
快速干燥过程中多孔介质内部湿分迁移机理的研究   总被引:13,自引:0,他引:13  
本文对快速干燥过程中多孔介质内部湿分迁移机制进行了实验研究和理论分析。实验本体是一台X-650扫描电子显微镜;实验样品分别为大蒜;胡萝卜和土豆片。提出了压力梯度作用下的毛细管通道内的挤压流动是高强度干燥过程中湿分迁移的主要机理并对单毛细管通道内的挤压流动进行了理论分析。  相似文献   

2.
多孔物料干燥时的耦合传热传质效应   总被引:10,自引:0,他引:10  
1引言多孔物料干燥时的传热传质过程是一个典型的耦合过程,物料内的质扩散通量不仅受湿度梯度控制,而且还和温度梯度有关[1~5]。在对流干燥过程中,热量总是从物料表面向内部传递,而湿分总是从物料内部向表面迁移,然后扩散至干燥介质中,故物料内部的温度梯度和湿度梯度方向相反,由Luikov理论可知,向内的传热过程总是阻止物料中的湿分向表面迁移,从而减小质通量,降低干燥速度。显然,为了提高干燥速度,可以通过采用辅助加热或改变加热方式来减小物料内部逆向温度梯度、甚至改变温度梯度的方向以加快物料内部湿分向表面…  相似文献   

3.
含湿毛细多孔介质干燥过程相变传热传质分析   总被引:10,自引:0,他引:10  
分析了含湿毛细多孔介质干燥过程的主要机理,建立了以液相饱和度、温度和气体压力为参数的一维数学模型, 采用全隐式有限差分方法对该模型进行了数值计算。计算结果表明,干燥过程可分为两个阶段:不稳定阶段和稳定阶段。 在不稳定阶段,模拟参数变化剧烈,而在稳定阶段,模拟参数变化平稳。  相似文献   

4.
The interface evolution during the evaporation of a liquid from a saturated layer of porous medium (paper) was experimentally studied using spectral analysis of intensity fluctuations of a laser radiation scattered by the layer. The data obtained were compared with the results of modeling the irreversible growth in three-dimensional lattices. The dependences of the spectral halfwidth of intensity fluctuations on the drying time demonstrate the characteristic features of drying front evolution, which proved to be similar to those found in the modeling of irreversible growth front. A comparison of the maximal halfwidths for two different saturating liquids suggests that the motion of local interfaces during the liquid evaporation from a layer of porous medium is close to the “classical” diffusion.  相似文献   

5.
A thin composite separator with polyethylene terephthalate nonwoven membrane as the structural support and polyvinylidene fluoride-hexafluoropropylene as the coating layer for lithium-ion batteries was prepared by a simple dip-coating process. The effect of different drying temperatures on the performance of the composite separator was investigated. The results indicate that 80 °C is the optimal drying temperature, preventing leakage current problems and providing a well-developed porous structure. The drying of the composite separator at 80 °C provides a superior thermal stability, better wettability with electrolyte, higher electrolyte uptake, and ionic conductivity compared to commercially available polypropylene (PP) separator. Furthermore, the electrochemical performance consisting of electrochemical stability, self-discharge, cycle performance, rate performance of the composite separator, and PP were determined. The drying of the composite separator at 80 °C shows almost the same oxidation stability and self-discharge performance, but a better cycling and rate performance than the PP separator.  相似文献   

6.
This review is devoted to the analysis of the problems related to fabrication of the Si porous layers. The review was motivated by a great interest to Si-based porous materials from nano- to macro-scale for various applications in electronics, optoelectronics, photonics, chemical sensors, biosensors, etc. The peculiarities of the silicon porosification and the principles of preparing porous layers are considered in the present article. Various methods used for Si porosification such as chemical stain etching, chemical vapor etching, laser-induced etching, metal-assisted etching, spark processing and reactive ion (plasma) etching were analyzed. However, the main attention was focused on electrochemical porosification of Si. The review discusses in detail the influence of parameters such as electrolyte composition and pH, current density, etching time, temperature, wafer doping and orientation, lighting, magnetic field, and ultrasonic agitation on the process of Si porosification. It was shown that the structure of porous silicon strongly depends on both technological parameters of electrochemical etching and the parameters of the semiconductor subject to treatment. This review also addresses the main properties of porous silicon, porous multilayer and 3D structure formation, oxidation of porous Si, release of the porous layer, drying, storage, etching, filling and surface functionalizing of porous Si. Features of III-V compound porosification are also briefly analyzed.  相似文献   

7.
The statements and numerical solution of the problem of igniting the wood wall as a result of the fire seat effect based on the mathematical model of a porous reacting medium are proposed. The original reagent ignition is found to be determined by the processes of drying, pyrolysis (decomposition and synthesis reactions) of dry wood, reaction of the carbon oxide oxidation as well as by the wood thermophysical properties.  相似文献   

8.
The European Physical Journal E - The influence of temperature gradients on the drying of water-saturated porous networks has been studied. We have focussed on the influence of the temperature on...  相似文献   

9.
多孔介质体干燥过程中含水率分布的可视化研究   总被引:3,自引:0,他引:3  
工业中应用广泛的食品干燥等干燥现象,多是含水多孔介质体的干燥。本文利用可视化实验,研究了含水多孔介质体的干燥现象。并利用实验拍摄的数字图像进行分析和含水率计算,提出干燥过程中含水率分布图像化的方法,并讨论了将此图像化方法应用于含水多孔介质体干燥的可行性。  相似文献   

10.
A kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying is presented. The proposed two-dimensional model addresses the dynamics of nanoparticles in the vertical plane of a drying nanocolloid film. The gas–liquid interface movement due to solvent evaporation was controlled by a time-dependent chemical potential, and the resultant particle dynamics including Brownian diffusion and aggregate growth were calculated. Simulations were performed at various Peclet numbers defined based on the rate ratio of solvent evaporation and nanoparticle diffusion. At high Peclet numbers, nanoparticles accumulated at the top layer of the liquid film and eventually formed a skin layer, causing the formation of a particulate film with a densely packed structure. At low Peclet numbers, enhanced particle diffusion led to significant particle aggregation in the bulk colloid, and the resulting film structure became highly porous. The simulated results showed some typical characteristics of a drying nanocolloid that had been reported experimentally. Finally, the potential of the model as well as the remaining challenges are discussed.  相似文献   

11.
Ultrasonic drying of foodstuff in a fluidized bed: Parametric study   总被引:1,自引:0,他引:1  
The application of high power ultrasound for dehydration of porous materials may be very effective in processes in which heat-sensitive materials such as foodstuffs have to be treated. In fact, high-intensity ultrasonic vibrations are capable of increasing heat and mass transfer processes in materials. The application of ultrasonic energy can be made alone or in combination with other kind of energy such as hot-air. In this case, ultrasound helps in reducing temperature or treatment time. The aim of this work is to study the effect of air flow rate, ultrasonic power and mass loading on hot-air drying assisted by a new power ultrasonic system. The drying chamber is an aluminium vibrating cylinder, which is able to create a high intensity ultrasonic field in the gas medium. To that purpose the chamber is driven at its centre by a power ultrasonic vibrator at 21.8 kHz. Drying kinetics of carrot cubes and lemon peel cylinders were carried out at 40 degrees C for different air velocities, with and without ultrasound. The results show that the effect of ultrasound on drying rate is affected by air flow rate, ultrasonic power and mass loading. In fact, at high air velocities the acoustic field inside the chamber is disturbed and the effect of ultrasound on drying kinetics diminishes.  相似文献   

12.
W. Sun  G. Fu 《哲学杂志》2013,93(2):337-353
A gold nanoparticles/monolithic mesoporous silica assembly was synthesized by ultrasonic irradiation of monolithic porous silica presoaked with precursor solution. Subsequent exposure to ambient air (ageing) and then drying at 120°C induce a new optical absorption peak around 470?nm (falling into the range from 460 to 475?nm) which is stable at room temperature, in addition to the normal surface plasmon resonance (SPR) of Au nanoparticles. Further drying results in the decline and disappearance of this peak, accompanied by increase of the normal SPR. If the sample, in which the new peak has disappeared due to long drying at 120°C, is exposed to the ambience once more, this peak will appear again after subsequent drying at 120°C, showing reversibility. Further experiments indicate that ambient ageing for a certain time plays a crucial role in the appearance of the new peak after subsequent drying at 120°C. Increased ageing time increases this peak. In addition, the ambient relative humidity and temperature during exposure are also important to the appearance of this peak. This peak may be associated with Au clusters with a size less than 1.5?nm. Based on the porous structure of the assembly and hydrophilicity of its pore wall, a nanodroplet formation and evaporation model is presented which can well explain all evolution behaviours of this peak. The model predicts the existence of the peak at 470?nm in the Au/silica assembly prepared by methods other than ultrasonic irradiation, which has also been confirmed by further experiments.  相似文献   

13.
Moisture and salt transport in masonry can give rise to damages. Therefore a detailed knowledge of the moisture and salt transport is essential for understanding the durability of masonry. A special NMR apparatus has been made allowing quasi-simultaneous measurements of both moisture and Na profiles in porous building materials. Using this apparatus both the absorption of a 4 M NaCl solution in a calcium silicate brick and the drying of a 3 M NaCl capillary saturated fired-clay brick have been studied. It was found that during the absorption process the Na ions clearly stay behind, which this is caused by adsorption of these ions to the pore surface. For the drying it was found that at the beginning of the drying process the ions accumulate near the surface. As the drying rate decreases, diffusion becomes dominant and the ion profile levels off again.  相似文献   

14.
Abstract

Large monolithic xerogel silica glasses were successfully made from tetramethyl-orthosilicate and distilled water using the combination of an acidic drying control chemical additive (DCCA) and a specially designed drying chamber. The acidic DCCA increases the gel strength by formation of a fibrillar ultrastructure, and the drying chamber reduces the catastrophic capillary forces inside the wet gel body.

Partially densified monolithic gels up to 850°C were routinely made for physical property tests and compared to commercial fused silicas. Although the mechanical properties of the porous gel-silica monoliths such as microhardness, Young's modulus, toughness, flexural strength, density are relatively lower than fused silica, the optically transparent porous gel silica has a UV cut-off ranging from 250–300 nm. Such a porous gel with excellent optical transmission and a highly uniform pore radius of 10–50 Å offers a unique, chemically stable matrix for impregnation with a second phase of optically active organic or inorganic compounds.

The processing and properties of Types I and II fused quartz optics and Types III and IV synthetic fused silica optics are compared with the new organometallic sol-gel derived gel-silica optics. Fully dehydrated and densified gel-silica has excellent transmission from 165 nm to 4400 nm with no OH absorption peaks. This optical transmission is equivalent to the best Type IV fused silica. The other physical properties and structural characteristics of the dehydrated dense gel-silica are similar to fused quartz and fused silica. However, the dense gel-silica has a lower coefficient of thermal expansion of 2.0 × 10?7 cm/cm compared with 5.5 × 10?7 cm/cm for standard vitreous silicas. The CTE value is temperature independent from 80 K to 500 K. Sol-gel silica optics can be made as complex shapes by casting of the sol into inexpensive plastic molds.  相似文献   

15.
The drying dynamics in three dimensional porous media are studied with confocal microscopy. We observe abrupt air invasions in size from single particle to hundreds of particles. We show that these result from the strong flow from menisci in large pores to menisci in small pores during drying. This flow causes air invasions to start in large menisci and subsequently spread throughout the entire system. We measure the size and structure of the air invasions and show that they are in accord with invasion percolation. By varying the particle size and contact angle we unambiguously demonstrate that capillary pressure dominates the drying process.  相似文献   

16.
The influence of interface porosity on the wetting properties of colloid-polymer mixtures is studied within density functional theory for the Asakura-Oosawa-Vrij model at the surface of a quenched hard-sphere matrix. While the porosity hardly changes the location of the transition from partial to complete wetting at colloidal bulk gas-liquid coexistence, the onset of wetting, as signaled by the first discontinuous layering transition, can be efficiently controlled by tailoring the porosity. We furthermore find that the penetrability of the porous interface induces complete drying into the matrix upon approaching capillary coexistence.  相似文献   

17.
多孔介质快速干燥过程热质耦合方程的代数显式解析解   总被引:6,自引:0,他引:6  
对多孔介质快速干燥过程的传热与传质耦合方程组导出了两套代数显式解析特解。这些解首先可以作为计算传热传质学的标准解,用以检验数值计算的准确性、收敛性与稳定性等,还可以启发数值工作者改进计算技巧例如差分格式与网格生成技术等。当然,解析解还会有其相应的理论价值。  相似文献   

18.
Electrospun poly-(?-caprolactone) (PCL) nanofibers has been widely used in the medical prosthesis. However, poor hydrophilicity and the lack of natural recognition sites for covalent cell-recognition signal molecules to promote cell attachment have limited its utility as tissue scaffolds. In this study, Bilayer porous scaffolds based on PCL electrospun membranes and gelatin (GE) sponges were fabricated through soft hydrolysis of PCL electrospun followed by grafting gelatin onto the fiber surface, through crosslinking and freeze drying treatment of additional gelatin coat and grafted gelatin surface. GE sponges were stably anchored on PCL membrane surface with the aid of grafted GE molecules. The morphologies of bilayer porous scaffolds were observed through SEM. The contact angle of the scaffolds was 0°, the mechanical properties of scaffolds were measured by tensile test, Young's moduli of PCL scaffolds before and after hydrolysis are 66–77.3 MPa and 62.3–75.4 MPa, respectively. Thus, the bilayer porous scaffolds showed excellent hydrophilic surface and desirable mechanical strength due to the soft hydrolysis and GE coat. The cell culture results showed that the adipose derived mesenchymal stem cells did more favor to adhere and grow on the bilayer porous scaffolds than on PCL electrospun membranes. The better cell affinity of the final bilayer scaffolds not only attributed to the surface chemistry but also the introduction of bilayer porous structure.  相似文献   

19.
NMR imaging is employed to study the preparation of supported catalysts and a number of mass transport processes in porous catalysts and sorbents. It is shown that, similar to Pt, adsorbed Pd leads to the increase of the relaxation times of liquids permeating porous alumina supports. A faster penetration of adsorbed water into the sorbent is observed when water vapor sorption by selective water sorbents is carried out under vacuum as compared to the sorption from moist air. An interruption of the capillary flow of water within the monolithic catalyst is shown to lead to a non-uniform drying along the monolith channels. Flow imaging of water inflowing into the monolith has revealed a complicated flow pattern characterized by the existence of counterflows in the entrance region.  相似文献   

20.
多孔介质快速干燥过程中热质耦合效应的研究   总被引:10,自引:1,他引:9  
本文针对一维多孔介质的第一类边界条件,对高强度快速干燥条件下热质交换的普遍微分方程组进行求解。研究了高强度快速干燥过程中多孔介质内部传热传质之间的相互耦合现象以及初始边界条件的变化对热质传递的影响,为多孔介质内部温度场和湿度场的控制奠定理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号