首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
LaxSr1 ? xCoyFe1 ? yO3 ? δ (LSCF) represents one of the state-of-the-art cathode materials for solid oxide fuel cells (SOFCs) due primarily to its high ionic and electronic conductivity. In this study, a one-step infiltration process has been developed to deposit, on the surface of a porous LSCF cathode, a thin film (50–100 nm) of Sm0.5Sr0.5CoO3 ? δ (SSC), which is catalytically more active for oxygen reduction. Electrochemical impedance spectroscopy reveals that the SSC coating has dramatically reduced the polarization resistance of the cathode, achieving area-specific resistances of 0.036 Ω cm2 and 0.688 Ω cm2 at 750 °C and 550 °C, respectively. It has also maintained the stability of LSCF cathodes. In particular, the peak power densities are increased by ~ 22% upon the infiltration of SSC onto the porous LSCF cathodes of our best performing cells. These results demonstrate that a conductive backbone (e.g., LSCF) coated with a catalytic film (e.g., SSC) is an attractive approach to achieving an active and stable SOFC cathode for low-temperature solid oxide fuel cells.  相似文献   

2.
《Solid State Ionics》2006,177(19-25):2053-2057
La(Sr)Ga(Fe,Mg)O3 exhibited the high oxide ion conductivity and the electrical power generating property of SOFC single cell using La0.7Sr0.3Ga0.7Fe0.2Mg0.1O3-δ (LSGFM) electrolyte was investigated in this study. The transport number of oxide ion is almost 0.8 in LSGFM and so open circuit potential (OCV) is as low as 0.8 V. OCV was strongly affected by anode materials and the highest OCV was achieved on Ni–Fe bimetallic anode. The extremely high power density was achieved by using LSGFM for electrolyte of SOFC. The maximum power densities of the cells can be elevated by coating with oxide ion conductor film at anode side. The maximum power density increased in the following order for coating film: LSGM > SDC > YSZ. The maximum power density of 197 and 100 mW/cm2 can be achieved at 873 and 773 K, respectively, when LSGM film deposited on the anode side of LSGFM. Therefore, LSGFM can be used as electrolyte of SOFC operating at intermediate temperature.  相似文献   

3.
J.-H. Kim  A. Manthiram 《Solid State Ionics》2009,180(28-31):1478-1483
Perovskite-related intergrowth oxides Sr2.7Ln0.3Fe1.4Co0.6O7 ? δ (Ln = La, Nd, Sm, and Gd) have been investigated as cathode materials for solid oxide fuel cells (SOFC). With decreasing size of the Ln3+ ions, the unit cell volume, oxygen content, thermal expansion coefficient (TEC), and total electrical conductivity decrease from Ln = La to Gd. The decreasing unit cell volume and oxygen content is attributed to the decreasing size of Ln3+ ions from Ln = La to Gd and a consequent preference for lower coordination numbers. While the decrease in the ionicity of the Ln–O bonds from Ln = La to Gd causes a decrease in the TEC, the increasing amount of oxygen vacancies leads to a decrease in electrical conductivity arising from a thermally activated semiconducting behavior. The cathode polarization conductance (Rp? 1) measured using the ac-impedance spectroscopy and the catalytic activity for the oxygen reduction reaction in SOFC decrease from Ln = La to Gd partly due to the decrease in electrical conductivity.  相似文献   

4.
《Solid State Ionics》2006,177(9-10):901-906
Crystal structure, thermal expansion coefficient, electrical conductivity and cathodic polarization of compositions in the system Sm0.5Sr0.5Co1  xFexO3  δ with 0  x  0.9 were studied as function of Co / Fe ratio and temperature, in air. Two phases, including an Orthorhombic symmetry for 0  x  0.4 and a cubic symmetry for 0.5  x  0.9, were observed in samples of Sm0.5Sr0.5Co1  xFexO3  δ at room temperature. The adjustment of thermal expansion coefficient (TEC) to electrolyte, which is one of the main problems of SSC, could be achieved to lower TEC values with more Fe substitution. High electrical conductivity above 100 S/cm at 800 °C was obtained for all specimens, so they could be good conductors as cathodes of IT-SOFC. The polarization behavior of SSCF as a function of Fe content was evaluated by means of AC impedance using LSGM electrolyte. It was discovered that the Area Specific Resistance (ASR) of SSCF increased as the amount of substitution of Fe for Co increased. When the amount of Fe reached to 0.4, the highest ASR was obtained and then the resistance started decreasing above that. The electrode with a composition of Sm0.5Sr0.5Co0.2Fe0.8O3  δ showed high catalytic activity for oxygen reduction operating at temperature ranging from 700 to 800 °C.  相似文献   

5.
In this paper we report epitaxial tetragonal iron selenide thin films grown on single crystal SrTiO3 (STO) (0 0 1) and MgO (0 0 1) substrates by a pulsed laser deposition (PLD) technique. Deposition temperature and annealing process are found to be critical for achieving the tetragonal phase and the optimum superconducting properties of the films. The critical transition temperature of the thin films ranges from 2 K to 11.5 K depending on the deposition temperature and annealing condition. The samples with higher critical transition temperatures show better film crystallinity along with self-assembled Fe3O4 nanoparticles (~15 nm in average particle size) in the films according to both X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Besides the better crystallinity achieved in the films, the formation of Fe3O4 nanoparticles could assist the formation of the tetragonal FeSe phase and thus lead to the enhanced superconducting properties.  相似文献   

6.
《Solid State Ionics》2006,177(19-25):1733-1736
Thin films of La1.61GeO5−δ, a new oxide ionic conductor, were fabricated on dense polycrystalline Al2O3 substrates by a pulsed laser deposition (PLD) method and the effect of the film thickness on the oxide ionic conductivity was investigated on the nanoscale. The deposition parameters were optimized to obtain La1.61GeO5−δ thin films with stoichiometric composition. Annealing was found necessary to get crystalline La1.61GeO5−δ thin films. It was also found that the annealed La1.61GeO5−δ film exhibited extraordinarily high oxide ionic conductivity. Due to the nano-size effects, the oxide ion conductivity of La1.61GeO5−δ thin films increased with the decreasing thickness as compared to that in bulk La1.61GeO5−δ. In particular, the improvement in conductivity of the film at low temperature was significant .The electrical conductivity of the La1.61GeO5−δ film with a thickness of 373 nm is as high as 0.05 S cm 1 (log(σ/S cm 1) =  1.3) at 573 K.  相似文献   

7.
《Solid State Ionics》2006,177(13-14):1163-1171
Oxygen non-stoichiometry and electrical conductivity of the Pr2−xSrxNiOδ series with x = 0.0–0.5 were investigated in Ar/O2 (pO2 = 2.5 to 21 000 Pa) within a temperature range of 20–1000 °C. The equilibrium values of oxygen non-stoichiometry and electrical conductivity of these nickelates were determined as functions of temperature and oxygen partial pressure (pO2). The nickelates with x = 0–0.5 appear to be p-type semiconductors in the investigated temperature and pO2 ranges. The nickelates with x = 0.3–0.5 show very feebly marked pO2 dependencies of the conductivity. Pr1.7Sr0.3NiOδ shows the anomalies of the conductivity versus oxygen partial pressure which can be related to the orthorhombic–tetragonal crystal structure transformations. The conductivity of the Pr2−xSrxNiOδ samples correlates with the average oxidation state of the nickel cations. The samples with x = 0.5 have the highest nickel oxidation state (≈ 2.5+), the highest [Ni3+]/[Ni2+] ratio close to 1 and show the highest conductivity (≈ 120 S/cm) in the whole pO2 and temperature ranges investigated.  相似文献   

8.
In this work we demonstrate the preparation of Er3+ doped perovskite ferroelectric Na0.5Bi0.5TiO3 nanocrystals and their application in temperature sensing. The samples were synthesized via a facile hydrothermal method. Upconversion emission at 528 nm and 547 nm from two thermodynamically coupled excited states of Er3+ were recorded in the temperature from 80 K to 480 K under the excitation of a 980 nm diode laser. The emission intensity ratio (I528/I547) as a function of the temperature was investigated. A sensitivity of 0.0053 K−1 is observed at 400 K, suggesting they are promising candidate for nanothermometers.  相似文献   

9.
《Current Applied Physics》2010,10(3):866-870
Perovskite La1−xSrxFeO3 (0.10  x  0.20) ceramics have been synthesized by the conventional solid-state reaction technique. Their electrical resistivity, Seebeck coefficient and thermal conductivity have been measured. It has been found that the increase of Sr content reduces significantly both the electrical resistivity and the Seebeck coefficient, but slightly increases the high-temperature thermal conductivity. An adiabatic hopping conduction mechanism of small polaron is suggested from the analysis of the temperature dependence of the electrical resistivity. Seebeck coefficients decrease with increasing temperature, and saturate at temperature above 573 K. The saturated value of Seebeck coefficient decreases with increasing of Sr contents, from 200 μV/K for x = 0.10 to 100 μV/K for x = 0.20. All samples exhibit lower thermal conductivity with values around 2.6 W/m K. The highest dimensionless figure of merit is 0.031 at temperature 973 K in La0.88Sr0.12FeO3.  相似文献   

10.
《Solid State Ionics》2006,177(15-16):1317-1322
We have synthesized the perovskite oxides of the (Ba0.3Sr0.2La0.5)(In1−xFex)O3−δ system and measured the total electrical conductivity as a function of temperature and oxygen partial pressure. It was found that the single-phase composition region extended from x = 0.0 to x = 1.0, and that the Fe valence increased from 3.06 to 3.50 in that region. The electrical conductivity was semiconducting from x = 0.0 to x = 0.40 and metallic from x = 0.50 to x = 1.0. The total electrical conductivity at 800 °C also increased with the Fe content and achieved a maximum value of 140 (S/cm) at x = 1.0. From the dependence of the electrical conductivity on the oxygen partial pressure, we conclude that above x = 0.50, the majority carriers are holes. The estimated hole conductivity increased exponentially with the amount of Fe4+ cation present. The oxide ion conductivity was dependent on the oxygen vacancy content.  相似文献   

11.
Doped lanthanum manganese chromite based perovskite, La0.7A0.3Cr0.5Mn0.5O3 ? δ (LACM, A = Ca, Sr, Ba), on yttria-stabilized zirconia (YSZ) electrolyte is investigated as potential electrode materials for solid oxide fuel cells (SOFCs). The electrical conductivity and electrochemical activity of LACM depend on the A-site dopant. The best electrochemical activity is obtained on the La0.7Ca0.3Cr0.5Mn0.5O3 ? δ/YSZ (LCCM/YSZ) composite electrodes. The conductivity of LCCM is 29.9 S cm? 1 at 800 °C in air, and the electrode polarization resistance (RE) of the LCCM/YSZ composite cathode for the O2 reduction reaction is 0.5 Ω cm2 at 900 °C. The effect of Gd-doped ceria (GDC) impregnation on the LCCM cathode polarization resistances is also studied. GDC impregnation significantly enhances the electrochemical activity of the LCCM cathode. In the case of the 6.02 mg cm? 2 GDC-impregnated LCCM cathode, RE is 0.4 Ω cm2 at 800 °C, ~ 60 times smaller than 24.4 Ω cm2 measured on a LCCM cathode without the GDC impregnation. Finally the electrochemical activities of the doped lanthanum manganese chromites for the H2 oxidation reaction are also investigated.  相似文献   

12.
The intrinsic pinning properties of FeSe0.5Te0.5, which is a superconductor with a critical temperature Tc of approximately 14 K, were studied through the analysis of magnetization curves obtained using an extended critical state model. For the magnetization measurements carried out with a superconducting quantum interference device (SQUID), external magnetic fields were applied parallel and perpendicular to the c-axis of the sample. The critical current density Jc under the perpendicular magnetic field of 1 T was estimated using the Kimishima model to be equal to approximately 1.6 × 104, 8.8 × 103, 4.1 × 103, and 1.5 × 103 A/cm2 at 5, 7, 9, and 11 K, respectively. Furthermore, the temperature dependence of Jc was fitted to the exponential law of Jc(0) × exp(?αT/Tc) up to 9 K and the power law of Jc(0) × (1 ? T/Tc)n near Tc.  相似文献   

13.
(1 ? x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–PT) thin films have been deposited on quartz substrates using pulsed laser deposition (PLD). Crystalline microstructure of the deposited PMN–PT thin films has been investigated with X-ray diffraction (XRD). Optical transmission spectroscopy and Raman spectroscopy are used to characterize optical properties of the deposited PMN–PT thin films. The results show that the PMN–PT thin films of perovskite structure have been formed, and the crystalline and optical properties of the PMN–PT thin films can be improved as increasing the annealing temperature to 750 °C, but further increasing the annealing temperature to 950 °C may lead to a degradation of the crystallinity and the optical properties of the PMN–PT thin films. In addition, a weak second harmonic intensity (SHG) has been observed for the PMN–PT thin film formed at the optimum annealing temperature of 750 °C according to Maker fringe method. All these suggest that the annealing temperature has significant effect on the structural and optical properties of the PMN–PT thin films.  相似文献   

14.
Quasielastic neutron scattering (QENS) has been applied to study the sodium mobility on nanosecond time scales in the perovskite fluoride cryolite, Na3AlF6, at high temperatures. Up to T = 1153 K the diffusion of Na ions is well described by a diffusion process of jumps between six and eight-fold coordinated sites. Above this temperature, where a step-like increase in the electrical conductivity occurs, the jump length increases, which indicates additional jumps over larger distances. The electrical conductivity derived from the self-diffusion coefficient via the Nernst–Einstein relation and the corresponding activation energy are in excellent agreement with the previous conductivity measurements. We conclude that the jump diffusion of sodium ions is the dominant mechanism for the electrical conductivity in cryolite at high temperatures up to T = 1153 K.  相似文献   

15.
Successive Ionic Layer Adsorption and Reaction (SILAR) technique was used to deposit the CuInS2/In2S3 multilayer thin film structure at room temperature. The as-deposited film was annealed at 100, 200, 300, 400 and 500 °C for 30 min in nitrogen atmosphere and the annealing effect on structural, optical and photoelectrical properties of the film was investigated. X-ray diffraction (XRD) and optical absorption spectroscopy were used for structural and optical studies. Current–Voltage (I–V) measurements were performed in dark environment and under 15, 30 and 50 mW/cm2 light intensity to investigate the photosensitivity of the structure. Also, the electrical resistivity of the film was determined in the temperature range of 300–470 K. It was found that annealing temperature drastically affects the structural, optical and photoelectrical properties of the CuInS2/In2S3 films.  相似文献   

16.
《Solid State Ionics》2006,177(26-32):2585-2588
Electronically conducting glasses of the composition xV2O5·(100  x)P2O5 for 60 < x < 90 were prepared. The glasses of the composition corresponding to x = 90 exhibited the highest electrical conductivity and they were studied in more detail. The effects of the annealing of the samples on their electrical conductivity, structure and other characteristics were studied by impedance spectroscopy, X-ray diffractometry, DSC and SEM microscopy. It was shown that, at temperatures close to the crystallization temperature Tc (determined from DSC), these glasses turned into nanomaterials consisting of crystalline grains of V2O5 (average size 25–35 nm) embedded in the glassy matrix. Their electrical conductivity was higher and the temperature stability was better than those of the starting glasses. It is postulated that the major role in this conductivity enhancement is played by the interfacial regions between crystalline and amorphous phases. The annealing at temperatures exceeding Tc led to massive crystallization and to a conductivity drop. The XRD and SEM observations have shown that the material under study undergoes structural changes: from amorphous at the beginning, to partly crystalline after the annealing at 340 °C and to polycrystalline after the annealing at 530 °C.The obtained results are in agreement with those of our earlier studies on mixed electronic–ionic conducting glasses of the ternary Li2O–V2O5–P2O5 system.  相似文献   

17.
《Current Applied Physics》2010,10(2):452-456
The GZO/Ag/GZO sandwich films were deposited on glass substrates by RF magnetron sputtering of Ga-doped ZnO (GZO) and ion-beam sputtering of Ag at room temperature. The effect of GZO thickness and annealing temperature on the structural, electrical and optical properties of these sandwich films was investigated. The microstructures of the films were studied by X-ray diffraction (XRD). X-ray diffraction measurements indicate that the GZO layers in the sandwich films are polycrystalline with the ZnO hexagonal structure and have a preferred orientation with the c-axis perpendicular to the substrates. For the sandwich film with upper and under GZO thickness of 40 and 30 nm, respectively, it owns the maximum figure of merit of 5.3 × 10−2 Ω−1 with a resistivity of 5.6 × 10−5 Ω cm and an average transmittance of 90.7%. The electrical property of the sandwich films is improved by post annealing in vacuum. Comparing with the as-deposited sandwich film, the film annealed in vacuum has a remarkable 42.8% decrease in resistivity. The sandwich film annealed at the temperature of 350 °C in vacuum shows a sheet resistance of 5 Ω/sq and a transmittance of 92.7%, and the figure of merit achieved is 9.3 × 10−2 Ω−1.  相似文献   

18.
《Solid State Ionics》2006,177(13-14):1211-1217
La1−xSrxCr1−xMxO3−δ (M = Cr, Fe, V) system has been studied as anode materials for solid oxide fuel cells (SOFCs). The perovskite La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCM) is stable in both H2 and CH4 atmospheres at temperatures up to 1000°C. However, in the reducing atmospheres of H2 and CH4, its electronic conductivity is greatly reduced from its value in air. We have characterized LSCM as the anode of a SOFC having 250 μm-thick La0.8Sr0.2Ga0.83Mg0.17O2.815 (LSGM) as the electrolyte and SrCo0.8Fe0.2O3−δ (SCF) as the cathode. We report a comparison of the overpotentials at the following anodes: (1) La0.4Ce0.6O1.8 (LDC) + NiO composite in H2, (2) porous LSCM in H2 and CH4, (3) porous LSCM impregnated with CuO in H2 and CH4 and (4) porous LSCM impregnated with CuO and sputtered with Pt in H2 and CH4. An LSCM + CuO + Pt anode gave a maximum power output at 850 °C of 850 mW/cm2 and 520 mW/cm2, respectively, with H2 and CH4 as fuel whereas anode (1) gave 1.4 W/cm2 at 800 °C in H2. There was no noticeable coke formation in CH4 with anodes (2), (3) and (4), which demonstrates that the perovskite oxide is a plausible option for the anode of a SOFC operating with hydrocarbon fuels. We also report the moisture effect in the H2 and CH4 fuel-oxidation process.  相似文献   

19.
YBa2Cu3O7?δ (YBCO) superconductors were coated on the CeO2/YSZ/Y2O3 buffered Ni-5at%W tapes by a reel-to-reel pulsed laser deposition (PLD). The process of a multi-layer deposition of YBCO film was explored. X-ray diffraction texture measurements showed good both in-plane and out of plane crystalline orientations in YBCO films. The average values calculated at a full width at half maximum (FWHM) of the peaks from phi-scans (φ) and omega (ω) scans for one meter-long YBCO tape were 7.49° and 4.71°, respectively. The critical current (Ic) was over 200 A/cm-width at 77 K and under self-field for meter-long YBCO tape. The critical transition temperature of the YBCO tape was typically as 90.1 K with 0.5 K transition widths.  相似文献   

20.
《Solid State Ionics》2006,177(19-25):1929-1932
A2−αA′αMO4 (A = Pr, Sm, A′ = Sr, M = Ni, Mn) with K2NiF4-type structure were synthesized by solid reaction. Their chemical stability, electrical conductivity and thermal expansion behavior as well as cathodic polarization were investigated in relation to the cathode of SOFC. The results showed that A2−αA′αMO4 exhibited a low reactivity with yttria stabilized zirconia (YSZ) electrolyte. The thermal expansion coefficient (TEC) values were changed with the ionic radius of A. The specific conductivities of the nickelates were higher than those of manganites. While the nickelates showed a lower cathodic polarization in comparison with manganites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号