首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe3O4 nanoparticles and thin films were prepared on the Au(1 1 1) surface and characterized using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Fe3O4 was formed by annealing α-Fe2O3(0 0 0 1) structures on Au(1 1 1) at 750 K in ultrahigh vacuum (UHV) for 60 min. Transformation of the α-Fe2O3(0 0 0 1) structures into Fe3O4 nanoparticles and thin films was supported by XPS. STM images show that during the growth procedure used, Fe3O4 initially appears as nanoparticles at low coverages, and forms thin films at ~2 monolayer equivalents (MLE) of iron. Two types of ordered superstructures were observed on the Fe3O4 particles with periodicities of ~50 and ~42 Å, respectively. As the Fe3O4 particles form more continuous films, the ~50 Å feature was the predominant superstructure observed. The Fe3O4 structures at all coverages show a hexagonal unit cell with a ~3 Å periodicity in the atomically resolved STM images.  相似文献   

2.
Mixed Fe–Mo oxides are used in industrial catalytic processes of selective oxidation of methanol to formaldehyde. For better understanding of the structure-reactivity relationships of these catalysts we aim to prepare well-ordered iron–molybdate thin films as model catalysts. Here we have studied Mo deposition onto Fe3O4 (111) thin films produced on Pt(111) as a function of Mo coverage and annealing temperature using LEED, AES, STM and IRAS. At low temperatures, the iron oxide film is covered by Mo = O terminated molybdena nanoparticles. Upon oxidation at elevated temperatures (T > 900 K), Mo species migrate into the film and form new bonds with oxygen in the film. The resulting films maintain the crystal structure of Fe3O4, and the surface undergoes a (√3 × √3)R30° reconstruction. The structure is rationalized in terms of Fe substitution by Mo in the surface layers.  相似文献   

3.
(1 ? x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–PT) thin films have been deposited on quartz substrates using pulsed laser deposition (PLD). Crystalline microstructure of the deposited PMN–PT thin films has been investigated with X-ray diffraction (XRD). Optical transmission spectroscopy and Raman spectroscopy are used to characterize optical properties of the deposited PMN–PT thin films. The results show that the PMN–PT thin films of perovskite structure have been formed, and the crystalline and optical properties of the PMN–PT thin films can be improved as increasing the annealing temperature to 750 °C, but further increasing the annealing temperature to 950 °C may lead to a degradation of the crystallinity and the optical properties of the PMN–PT thin films. In addition, a weak second harmonic intensity (SHG) has been observed for the PMN–PT thin film formed at the optimum annealing temperature of 750 °C according to Maker fringe method. All these suggest that the annealing temperature has significant effect on the structural and optical properties of the PMN–PT thin films.  相似文献   

4.
A microstructural study of DC-sputtered Fe93−xZr3B4Agx films on Si(0 0 1) substrates has been carried out using X-ray diffraction (XRD) and transmission electron microscopy (TEM). All samples were deposited as a function of additive Ag content (x=0–6 at%), and annealed in the range of temperature, 300–600°C, for 1 h in order to obtain enhanced soft magnetic properties. Through XRD and TEM investigation, Ag-free Fe93Zr3B4 films on Si(0 0 1) substrates consisted of nano-crystalline Fe-based phases. In the presence of Ag additive element, the microstructure of as-deposited Fe93−xZr3B4Agx films consisted of a mixture of majority of Fe-based amorphous and Ag crystalline phases. In this case, additive element, Ag played a role in retarding the formation of Fe-based crystalline phases during deposition, and insoluble nano-crystalline Ag particles were dispersed in the Fe-based amorphous matrix. As the content of Ag increased, the intensity of Ag crystalline XRD peak increased. Crystallization of Fe-based amorphous phase in the matrix of Fe88Zr3B4Ag5 thin films occurred at an annealing temperature of 400°C. In the case of Fe88Zr3B4Ag5 films annealed at 500°C, a much enhanced permeability of the Fe-based alloy thin films associated with nano-crystalline phases was achieved.  相似文献   

5.
Magnesium diboride (MgB2) thin films were deposited on C-plane sapphire substrates by sputtering pure B and Mg targets at different substrate temperatures, and were followed by in situ annealing. A systematic study about the effects of the various growth and annealing parameters on the physical properties of MgB2 thin films showed that the substrate temperature is the most critical factor that determines the superconducting transition temperature (Tc), while annealing plays a minor role. There was no superconducting transition in the thin films grown at room temperature without post-annealing. The highest Tc of the samples grown at room temperature after the optimized annealing was 22 K. As the temperature of the substrate (Ts) increased, Tc rose. However, the maximum Ts was limited due to the low magnesium sticking coefficient and thus the Tc value was limited as well. The highest Tc, 29 K, was obtained for the sample deposited at 180 °C, annealed at 620 °C, and was subsequently annealed a second time at 800 °C. Three-dimensional (3D) AFM images clearly demonstrated that the thin films with no transition, or very low Tc, did not have the well-developed MgB2 grains while the films with higher Tc displayed the well-developed grains and smooth surface. Although the Tc of sputtered MgB2 films in the current work is lower than that for the bulk and ex situ annealed thin films, this work presents an important step towards the fabrication of MgB2 heterostructures using rather simple physical vapor deposition method such as sputtering.  相似文献   

6.
Pure (0 0 l)-textured CeO2 buffer layers were deposited on single crystal r-plane Al2O3 (1–102) substrate by a hybrid process which was combined with magnetron sputtering for the seed layer and metal–organic deposition for the subsequent layer. Strongly c-axis oriented YBCO films were deposited on the CeO2 buffered r-cut Al2O3 (1–102) substrates. Atomic force microscope and scanning electronic microscopy results show that the prepared buffers and YBCO films are relatively dense and smooth. The critical current of the YBCO films exceeds 1.5 MA/cm2 at 77 K with the superconducting transition temperature of 90 K. The surface resistivity is as below as 14 μΩ at 1 GHz frequency. The results demonstrate that the hybrid route is a very promising method to prepare YBCO films for microwave application, which can combine the sputtering advantage for preparing of highly c-axis oriented CeO2 buffer layers and the advantages of metal–organic deposition with rapid processing, low cost and easy preparation of large-area YBCO films.  相似文献   

7.
Pt/Fe3O4 core-shell nanoparticles have been prepared by a modified polyol method. Pt nanoparticles were first prepared via the reduction of Pt(acac)2 by polyethylene glycol-200 (PEG-200), and layers of iron oxide were subsequently deposited on the surface of Pt nanoparticles by the thermal decomposition of Fe(acac)3. The nanoparticles were characterized by XRD and HR-TEM. The as-prepared Pt/Fe3O4 nanoparticles have a chemically disordered FCC structure and transformed into chemically ordered fct structure after annealing in reducing atmosphere (4% H2, 96% Ar) at 700 °C. The ordered fct FePt phase has high magnetic anisotropy with coercivity reaching 7.5 kOe at room temperature and 9.3 kOe at 10 K.  相似文献   

8.
The effect of the growth rate on the Bi2Sr2CaCu2Oy (Bi2212) thin film quality on MgO substrate is investigated at several growth rates from 0.175 to 3 nm/min. The maximal step height on the film surface is improved from about 100 to 6 nm by the reduction of growth rate to 0.5 nm/min and simultaneously the superconducting critical temperature attaining to a zero resistance Tc(R=0), is also improved from 50 to 63 K. The surface morphologies of the upmost Bi-superconducting thin films with the intermediate layers on MgO substrate is also studied in contrast to that deposited directly on the MgO substrate.  相似文献   

9.
《Current Applied Physics》2010,10(3):724-728
Fe3+ doped δ-Bi2O3 thin films were prepared by sol–gel method on quartz glass substrate at room temperature and annealed at 800 °C. The thin films were then characterized for structural, surface morphological, optical and electrical properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption measurements and d.c. two-probe, respectively. The XRD analyses revealed the formation δ-Bi2O3 followed by a mixture of Bi25FeO40 and Bi2Fe4O9. SEM images showed reduction in grain sizes after doping and the optical studies showed a direct band gap which reduced from 2.39 eV for pure δ-Bi2O3 to 1.9 eV for 10% Fe3+ doped δ-Bi2O3 thin film. The electrical conductivity measurement showed the films are semiconductors.  相似文献   

10.
The changes of magnetic properties with annealing temperature were studied in the amorphous Fe86.7Zr3.3B4Ag6 thin film. The thin films were deposited by a DC magnetron sputtering method, annealed at 300–700°C for 1 h in vacuum under a field of 1.5 kOe parallel to the film plane, and then furnace-cooled. As a result, it has been found that the Ag addition to Fe–Zr–B amorphous thin films resulted in the decrease of crystallization temperature to 400°C due to promoted crystallization ability. Also, it gave rise to formation of fine BCC α-Fe crystalline precipitates with a grain size smaller than 10 nm in the amorphous matrix near 400°C, and led to prominent enhancement in the magnetic properties of the Fe86.7Zr3.3B4Ag6 thin films. Significantly, excellent magnetic properties such as a saturation magnetization of 1.7 T, a coercive force of 1 Oe and a permeability of 7800 at 50 MHz were obtained in the amorphous Fe86.7Zr3.3B4Ag6 thin film containing 7.2 nm-size BCC α-Fe, which was annealed at 400°C. Also, core loss of 1.4 W cm−3 (Bm=0.1 T) at 1 MHz in the thin film was obtained, and it is a much lower value than had been obtained in any existing soft magnetic materials. Such excellent properties are inferred to originate from the uniform dispersion of nano-size BCC α-Fe in the amorphous matrix.  相似文献   

11.
We report on the identification of Fe3O4 (magnetite) and α-Fe2O3 (hematite) in iron oxide thin films grown on α-Al2O3(0 0 0 1) by evaporation of Fe in an O2-atmosphere with a thickness of a few unit cells. The phases were observed by Raman spectroscopy and confirmed by X-ray diffraction (XRD). Magnetite appeared independently from the substrate temperature and could not be completely removed by post-annealing in an oxygen atmosphere as observed by X-ray diffraction. In the temperature range between 400 °C and 500 °C the X-ray diffraction shows that predominantly hematite is formed, the Raman spectrum shows a mixture of magnetite and hematite. At both lower and higher substrate temperatures (300 °C and 600 °C) only magnetite was observed. After post-annealing in an O2-atmosphere of 5 × 10?5 mbar only hematite was detectable in the Raman spectrum.  相似文献   

12.
《Current Applied Physics》2010,10(3):880-885
In the present work the influence of annealing temperature on the structural and optical properties of the In2O3 films deposited by electron beam evaporation technique in the presence of oxygen was studied. The deposited films were annealed from 350 to 550 °C in air. The chemical compositions of In2O3 films were carried out by X-ray photoelectron spectroscopy (XPS). The film structure and surface morphologies were investigated as a function of annealing temperature by X-ray diffraction (XRD) and atomic force microscopy (AFM). The structural studies by XRD reveal that films exhibit preferential orientation along (2 2 2) plane. The refractive index (n), packing density and porosity (%) of films were arrived from transmittance spectral data obtained in the range 250–1000 nm by UV–vis-spectrometer. The optical band gap of In2O3 film was observed and found to be varying from 3.67 to 3.85 eV with the annealing temperature.  相似文献   

13.
Thin superconducting films of CeCoIn5 were prepared in situ by simultaneous thermal evaporation of indium and dc magnetic field assisted sputtering of planar metallic Ce and Co targets. To achieve an effective sputtering of the magnetic Co target a special geometry with two facing planar targets (Ce and Co) and magnetic field perpendicular to the targets was used. The stoichiometric (0 0 1)-oriented CeCoIn5 films were grown on r-cut sapphire substrates with a high-rate of 100 nm/min. The temperature dependence of the electrical resistivity revealed the characteristic heavy-fermion behavior and a superconducting transition at about 2 K in agreement with the literature data for CeCoIn5 bulk material and thin films.  相似文献   

14.
The growth of ultrathin films of Y2O3(111) on Pt(111) has been studied using scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), and low energy electron diffraction (LEED). The films were grown by physical vapor deposition of yttrium in a 10? 6 Torr oxygen atmosphere. Continuous Y2O3(111) films were obtained by post-growth annealing at 700 °C. LEED and STM indicate an ordered film with a bulk-truncated Y2O3(111)–1 × 1 structure exposed. Furthermore, despite the lattices of the substrate and the oxide film being incommensurate, the two lattices exhibit a strict in-plane orientation relationship with the [11?0] directions of the two cubic lattices aligning parallel to each other. XPS measurements suggest hydroxyls to be easily formed at the Y2O3 surface at room temperature even under ultra high vacuum conditions. The hydrogen desorbs from the yttria surface above ~ 200 °C.  相似文献   

15.
Zinc oxide thin films have been obtained in O2 ambient at a pressure of 1.3 Pa by pulsed laser deposition (PLD) using ZnO powder target and ceramic target. The effect of temperature on structural and optical properties of ZnO thin films was investigated systematically by XRD, SEM, FTIR and PL spectra. The results show that the best structural and optical properties can be achieved for ZnO thin film fabricated at 700 °C using powder target and at 400 °C using ceramic target, respectively. The PL spectrum reveals that the efficiency of UV emission of ZnO thin film fabricated by using powder target is low, and the defect emission of ZnO thin film derived from Zni and Oi is high.  相似文献   

16.
We report the growth, structural, magnetic, and electrical transport properties of epitaxial Sr2CrReO6 thin films. We have succeeded in depositing films with a high crystallinity and a relatively large cationic order in a narrow window of growth parameters. The epitaxy relationship is Sr2CrReO6 (SCRO) (0 0 1) [1 0 0]∥SrTiO3 (STO) (0 0 1) [1 1 0] as determined by high-resolution X-ray diffraction and scanning transmission electron microscopy (STEM). Typical values of saturation magnetization of MS (300 K)=1 μB/f.u. and ρ (300 K)=2.8  cm have been obtained in good agreement with previous published results in sputtered epitaxial thin films. We estimate that the antisite defects concentration in our thin films is of the order of 14%, and the measured Curie temperature is TC=481(2) K. We believe these materials be of interest as electrodes in spintronic devices.  相似文献   

17.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   

18.
Cross sectional and plane-view transmission electron microscopy (X- and PV-TEM) were used to investigate the initial growth phase of 5, 10, 20 and 40 nm thick Ni1-xFex (x=0.6–0.8) films, prepared on MgO(0 0 1) covered with a buffer layer of Fe or Ni as well as on naked MgO(0 0 1). The 100 nm thick buffer layers of Fe and Ni were pre-grown on MgO(0 0 1). All of Ni0.20Fe0.80, Ni0.40Fe0.60, Fe and Ni films could be epitaxially grown at 250°C by dc-biased plasma sputtering at 2.9 kV in pure Ar gas.The films of Ni0.20Fe0.80 and Ni0.40Fe0.60 were grown in their own stable phase, bcc and fcc on MgO(0 0 1), respectively. However, Ni0.20Fe0.80 film could be grown in fcc phase pseudomorphic with Ni(0 0 1) up to 20 nm thick on Ni/MgO(0 0 1), while Ni0.40Fe0.60 film in bcc phase pseudomorphic with Fe(0 0 1) up to 10 nm thick on Fe/MgO(0 0 1). With increasing thickness, their growth phases transformed into their own stable phases. Whether or not the pseudomorphic phase may be induced and what its critical thickness may be should depend primarily on the lattice misfit between the crystal planes in contact. The growth mode of Ni0.40Fe0.60 film was investigated more in details to be compared with the simulations of the average strain energy versus thickness and with those of the critical thickness of the pseudomorphic films versus the lattice misfit between the contacted crystal planes.  相似文献   

19.
CeO2 buffer layers were deposited on YSZ single-crystal substrates using an RF-sputtering method. The development of crystalline textures of sputtered CeO2 films at different sputtering pressure and their effects on YBCO films, deposited by Metal Organic Deposition (MOD), were investigated. Both CeO2 and subsequent YBCO films grew well epitaxially. The relative XRD peak intensities of CeO2 (2 0 0) to substrate YSZ (2 0 0) increased with deposition pressure in the range of 3–5 mTorr and were inversely proportional to the θ–2θ scan FWHM values of CeO2 (2 0 0). Also, the reaction layers of BaCeO3 were thicker in the samples with lower CeO2 (2 0 0) intensities and poor out-of-plane alignment when CeO2 were deposited at the lower pressure of 3.3 mTorr. It is noted, however, that the superconducting layer grew well epitaxially on these BaCeO3 layers, possibly due to the epitaxial relation between CeO2 and YBCO. The superconducting critical currents of MOD-YBCO films showed an increasing tendency as both the Δ2θ (CeO2) and BaCeO3 peak intensities decreased.  相似文献   

20.
To investigate the effect of annealing on the structural and optical properties of a binary compound Ga5Se95, thin films of Ga5Se95 have been deposited on quartz substrates at room temperature by the thermal evaporation technique. X-ray diffraction patterns showed that the films before and after annealing at 573 K have polycrystalline texture and exhibit tetragonal structure. The dependences of the optical constants, the refractive index n and extinction coefficient k were studied in the spectral range of 200 nm to 2500 nm. The normal dispersion of the refractive index of the films could be described using the Wemple–DiDomenco single-oscillator model. Analysis of absorption index data reveals that as-deposited Ga5Se95 films has indirect transitions with optical energy gap of 1.685 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号