首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
低温冻害是茶园中最常见的自然灾害之一。茶树叶片低温胁迫的定量监测对于评估茶园冻害程度和及时采取措施具有重要意义。茶树低温胁迫的传统检测方法,主要是通过人工观察和理化指标的测定,存在精度低、效率低和主观性强等问题,严重影响了灾害后期的茶树管理。该研究提出了一种基于高光谱成像的茶树冻害程度定量判断方法。首先,利用高光谱成像设备采集自然环境中茶树叶片在无冻害发生、冻害初期和冻害后期三个阶段的光谱数据,提取叶片的平均反射率;测定相应叶片中的相对电导率(REC)、叶绿素(SPAD)和丙二醛(MDA)等生理生化指标。其次,利用多元散射校正(MSC)、一阶导数(1-D)和平滑滤波(S-G)算法对采集的原始高光谱数据进行预处理,并利用无信息变量消除(UVE)和竞争性自适应重加权(SPA)算法筛选预处理后高光谱数据的特征波段。最后,利用卷积神经网络(CNN)、支持向量机(SVM)和偏最小二乘法(PLS)建立REC、 SPAD和MDA含量的定量预测模型。结果表明:(1)经MSC+1-D+S-G算法预处理的光谱曲线比原始光谱曲线的波峰和波谷更加突出,提高了光谱的分辨率和灵敏度,有利于提高后期回归模型的精度;...  相似文献   

2.
刘燕德  邓清 《发光学报》2015,36(8):957-961
为实现脐橙叶片叶绿素含量无损检测及其分布可视化表征,采用高光谱成像技术,结合自适应重加权算法(CARS)和连续投影算法(SPA),筛选特征光谱变量,进行脐橙叶片叶绿素含量及可视化分布研究。选取叶绿素测量位置的7×7矩形感兴趣区域,提取并计算脐橙叶片平均光谱。基于Kennard-ston方法,将148个脐橙叶片样品划分成建模集和预测集(111∶37)。采用CARS和SPA算法分别筛选出了32个和6个叶绿素特征光谱变量,用于建立偏最小二乘(PLS)回归模型。采用37个未参与建模的脐橙叶片样品评价模型的预测能力,经比较,CARS-PLS和SPA-PLS模型均优于变量筛选前的PLS模型,且CARS-PLS和SPA-PLS模型的预测能力几乎相同,其预测集相关系数分别为0.90和0.91,均方根误差分别为1.53和1.60。SPA-PLS模型计算脐橙叶片每个像素点的叶绿素含量,经伪彩色变换,绘制了脐橙叶片叶绿素含量可视化分布图。实验结果表明:变量筛选方法结合高光谱成像技术,能够实现脐橙叶片叶绿素含量无损检测及叶绿素分布可视化表达,并简化了数学模型。  相似文献   

3.
考虑水分光谱吸收特征的水稻叶片SPAD预测模型   总被引:1,自引:0,他引:1  
叶绿素是植被光合作用的重要色素,传统实验室方法测定叶绿素含量需破坏性取样且操作复杂。通过构建高精度SPAD光谱估算模型,可以实现对水稻叶片叶绿素含量的实时无损监测。以黑龙江省不同施氮水平下水稻为研究对象,采用SVC HR768i型光谱辐射仪共获取移栽后、分蘖期、拔节期、孕穗期、抽穗期共五个关键时期水稻叶片反射光谱数据。光谱探测范围350~2 500 nm。利用自带光源型手持叶片光谱探测器直接测定叶片光谱,光源为内置卤素灯。采用SPAD-502型手持式叶绿素仪同步测定水稻叶片的SPAD值。叶片水分是植物光合作用的基本原料,也间接影响着叶绿素含量。叶片含水量降低则会影响植物正常的光合作用,导致其叶绿素含量随之降低。因此将叶绿素敏感波段与水分吸收范围结合作为SPAD估算的输入量。随机森林模型是一个基于多个分类树的算法。算法在采样的过程中包括两个完全随机的过程,一是有放回抽样,可能会得到重复的样本,二是选取自变量是随机的。因此本文对叶片光谱反射率进行去包络线(CR)处理,综合考虑可见光近红外波段提取水稻叶片反射光谱特征参数和植被指数,综合分析光谱指标与SPAD相关关系,采用随机森林算法构建不同输入量的SPAD高光谱估算模型。结果表明: (1)水稻叶片SPAD与光谱反射率的相关系数在叶绿素敏感波段红波段范围(600~690 nm)、红边范围(720~760 nm)、水分吸收波段范围(1 400~1 490和1 900~1 980 nm)均为0.75以上;(2)在光谱参数与SPAD 的相关分析中,NDVI,DP2与水稻叶片SPAD值相关性最好,相关系数为0.811和0.808;(3)以结合水分光谱信息后的CR(V1, V2, V3, V4)为自变量所建立的随机森林模型精度最高,R2为0.715,RMSE为2.646,可作为水稻叶片叶绿素预测模型。研究结果揭示了不同品种水稻的光谱响应机制,提供了水稻叶片SPAD值高精度反演的技术方法,为监测与调控东北地区水稻正常生育进程提供技术支持。  相似文献   

4.
以黑龙江多宝山和铜山矿区为例,通过采集矿区典型植物的光谱,以及岩石、土壤、植物中14种金属元素和植物叶片生化参数的测试分析,表明不同植物选择性吸收富集的金属元素不同,分别与岩石、土壤不同层中金属元素含量的相关性不同。由于植物叶片对金属元素富集,植物胁迫光谱的变异体现在光谱的‘红边’和吸收深度不同,而植物光谱的变异特征与其粗蛋白和叶绿素(a、b)含量相关,与叶绿素a的相关性更强。通过叶片内重金属元素含量和550~760nm之间波段吸收深度的多元回归分析,表明叶片中Co,Cu,Ni,Mo,Ag,Sb,W,Pb和As的含量与其光谱吸收深度的复相关系数都在0.75以上,相关性强。通过此研究,为植被覆盖区利用高光谱遥感调查评价金属元素的分布和富集奠定基础。  相似文献   

5.
虫害胁迫下毛竹叶绿素含量高光谱估算方法   总被引:1,自引:0,他引:1  
叶绿素作为参与植被光合作用最重要的色素,是监测毛竹虫害的一项重要指标。通过对不同光谱数据集进行波长筛选,建立虫害胁迫下竹叶叶绿素含量的高光谱估算模型,为利用高光谱遥感监测毛竹虫害提供理论依据。试验在福建省毛竹生产基地顺昌县进行,使用ASD FieldSpec 3光谱仪采集不同虫害程度竹叶光谱102条,并利用SPAD-502叶绿素计测定相应叶片叶绿素含量。通过对比不同虫害程度竹叶的光谱特征,探测利用高光谱数据估算叶绿素含量的机理。对竹叶原始光谱(OS)进行包络线去除(CR)、一阶导数(FD)、包络线去除一阶导数(CR-FD)变换,分析不同光谱数据与叶绿素含量的相关性,并利用连续投影算法(SPA)分别提取4种光谱的特征波长。采用基于x-y距离结合的样本划分法(SPXY)和随机法对4种光谱数据集进行划分,结合多元逐步回归(MSR)建立竹叶叶绿素含量估算模型,分析光谱变换及样本划分对估算叶绿素含量的影响。结果表明,不同虫害程度竹叶光谱反射率差异明显,主要表现为可见光波段范围内的"绿峰"和"红谷"的逐渐消失,"红边"斜率减小,近红外波长反射率降低。通过光谱变换可有效提升光谱与叶绿素含量的相关性,其中CR-FD光谱与叶绿素含量在724 nm处的相关系数最大。经连续投影算法提取的不同光谱数据集的特征波长集中分布在绿光、红光、"红边"位置,多个被选择波长位于与叶绿素含量相关性较高的波长区(600~750 nm)。基于SPXY样本划分法建立的MSR模型相比于随机样本划分法能显著提升叶绿素含量的估算精度,其中R~2和RPD平均提高0.1和0.5, RMSE平均降低0.7。以CR-FD光谱特征波长结合SPXY样本划分法建立的多元逐步回归模型对竹叶叶绿素含量的估算精度最高,R~2, RMSE和RPD分别为0.835, 2.604和2.364,可对虫害胁迫下毛竹叶片叶绿素含量进行准确的估算。  相似文献   

6.
基于光谱分析的植物叶片仿生伪装材料设计   总被引:3,自引:0,他引:3  
利用植物单叶光谱模型PROSPECT分析了植物叶片结构和组分对其反射光谱的影响.结果表明,模拟植物叶片反射光谱的仿生伪装材料应具有粗糙表面和疏松多孔结构,基体材料的折射指数应接近植物叶片且在400~2 500 nm之间基本不变,成分中应含有叶绿素和水并严格控制C-H键的含量.依据上述原则,设计了一种由粗糙透明防水表面、叶绿素、水和多孔材料四层构成的新型仿生伪装材料.验证实验表明,上述四层简单复合后的反射光谱即呈现出与植物叶片一致的反射光谱特征,相似度可达0.988 1,且经过三个月的日照后,其反射光谱特征不变,显示了较好的耐候性.该伪装材料与植物叶片光谱相似度高,耐候性好,有望成为对抗高光谱侦察的有效手段.  相似文献   

7.
基于高光谱的GA和SPA算法对赣南脐橙叶绿素定量分析   总被引:4,自引:0,他引:4  
用遗传算法(GA)和连续投影算法(SPA)分别提取了赣南脐橙叶片高光谱图像的有效信息,对叶绿素的含量用偏最小二乘法(PLS)进行建模定量分析。高光谱图像标定后,提取感兴趣区域(ROI)的平均光谱,用GA和SPA算法分别选出了27和8条特征波长,然后用PLS对叶绿素含量建模。GA-PLS与SPA-PLS模型得到的预测集相关系数分别为0.80和0.83,均方根误差分别为2.45和2.30。结果表明:SPA-PLS模型具有较高的优势,可以结合高光谱技术对赣南脐橙叶绿素含量快速、无损的定量分析。  相似文献   

8.
受污染胁迫玉米叶绿素含量微小变化的高光谱反演模型   总被引:3,自引:0,他引:3  
通过野外实验测试和室内样品化验,获得3个不同污染状况农田样地自然环境下玉米的高光谱反射率、叶片的叶绿素含量、叶片和土壤的重金属含量等数据。对高光谱数据的可见光波段(400~800 nm)进行导数光谱计算和连续统去除处理,得到吸收谷位置、吸收深度、绿峰位置、绿峰处归一化反射值、红边位置、红边处归一化反射率、红肩位置、吸收宽度、光谱不对称度等光谱特征参数。分析上述参数的物理含义并将其和玉米叶绿素含量变化进行相关分析,选择并确定与玉米污染胁迫叶绿素微小变化有一定关系的参数,作为输入因子,建立BP神经网络模型,逐步增强并提取农田污染胁迫状态下玉米叶绿素含量的微小变化信息。  相似文献   

9.
为了快速感知并分析田间作物生长状况,采用先进的半导体镀膜工艺的光谱成像传感器,研究镀膜型光谱成像数据的提取与叶绿素含量分布式检测的方法。实验采用基于镀膜原理的IMEC 5×5成像单元式多光谱相机,对47株苗期玉米植株的冠层进行拍摄,获取673~951 nm范围内的25个波长的光谱图像。利用SPAD-520叶绿素仪非破坏性地测量叶绿素含量指标,每株玉米冠层叶片设置2~3个采样点,每点测量3次取平均,共计251个样本数据;同时使用ASD Handheld2型光谱仪采集相应位置区域的反射率曲线,以对比分析镀膜型光谱成像传感器提取玉米植株冠层叶片反射率曲线的特性。首先,在分析镀膜型光谱成像传感器的成像原理的基础上,通过对原始图像的拆分和重组分别提取成像单元中相同波段的像素灰度值,并利用相同波段的像素灰度值重构单波段光谱图像,获取各波段光谱图像。其次,利用4灰度级标准板建立图像灰度值和灰度板反射率之间的线性反演公式,对提取的反射率进行校准。然后,为了准确分割出玉米植株冠层,提出了大津算法(OTSU)和霍夫圆变换组合的玉米植株冠层图像二次分割方法,分别剔除图像中土壤和培养盆背景的干扰。最后,利用马氏距离算法剔除异常样本数据,利用SPXY (sample set partitioning based on joint X-Y distance)算法划分建模集和验证集,采用偏最小二乘回归法(PLSR)建立玉米植株叶绿素含量指标诊断模型,并绘制其分布伪彩色图用于分析叶绿素含量空间分布特征。研究结果表明,①对25波段多光谱图像提取和反射率线性校准拟合模型决定系数均达到0.99以上。分析校准前和校准后与ASD光谱仪测量反射率曲线,镀膜型成像传感器获取玉米冠层反射光谱总体与ASD采集反射率体现的光谱特征一致,且校正后数据比校正前与ASD光谱反射率的一致性得到了提升。②建立初次OTSU分割算法和基于霍夫圆变换识别的二次分割算法,可以有效剔除玉米植株光谱图像中的土壤和培养盆背景噪声的干扰。③叶绿素含量指标PLSR诊断模型建模集R■为0.545 1,验证集R■为0.472 6。玉米作物冠层叶绿素分布可视化图可以直观反映叶绿素含量分布与生长动态情况。通过对镀膜型光谱成像传感器应用方法的研究,为后续玉米植株叶绿素动态快速检测奠定基础和提供技术支持。  相似文献   

10.
拉曼光谱法鉴定水稻叶绿素缺乏突变体   总被引:1,自引:0,他引:1  
植物叶色变异是自然界普遍的现象,叶色突变体已广泛应用于基础研究和生产实践.利用拉曼光谱测定了水稻叶色黄化突变体叶片的叶绿素含量.研究结果显示:在拉曼光谱图中·叶绿素的特征峰(1155,1527cm-1)在突变体中强度较野生型有很大的下降,表明突变体中总的叶绿素含量较低;紫外分光光度计的测定结果表明该突变体的叶绿素含量比野生型降低,且叶绿素b的含量极低,证实了拉曼光谱所反应的信息;拉曼光谱法可以用来快速鉴定植物活体的叶绿紊含量.本研究尝试利用拉曼光谱测定活体生物的叶绿素含量的可行性,为今后发展便携式、快速、准确、无损伤鉴定叶绿素含量及其他生物质含量的方法和开发相关仪器提供研究思路.  相似文献   

11.
减少叶面滞尘对茶树叶片水分有效光谱信息提取的干扰,有利于建立更加稳健的茶树叶片水分高光谱估算模型。以“舒茶早”为研究对象,通过田间随机采集鲜叶样品,测定叶片原始光谱反射率、含水量以及滞尘率。比较分析滞尘对茶树叶片原始光谱的影响,分别基于归一化计算与比值计算方法构建新波段植被指数,并利用相关系数法筛选叶片水分含量相关性最高的新波段植被指数,结合相对变率分析获取滞尘对叶片水分估算影响不敏感的待选指数。通过分析不同滞尘条件下新建植被指数和已有水分指数与滞尘的响应关系,筛选出滞尘影响下茶树叶片水分估算的最优植被指数,最终构建茶树叶片水分估算的高精度模型。结果表明:(1)位于711~1 378 nm波段范围的叶片光谱反射率受滞尘影响呈现显著降低的趋势,随着滞尘率增大光谱反射率减小,且无尘叶片反射率与有尘状态反射率具有明显聚类现象,相同状态下的不同叶片反射率差异性极显著。(2)新波段植被指数、已有水分指数与茶树叶片含水量之间的相关性以及基于该指数构建的茶树叶片水分估算模型的精度,在滞尘影响下均呈现明显的下降趋势。(3)在滞尘混合状态下,以1 298和1 325 nm为中心波段的新建比值植被指数对滞尘敏感性最低,且与叶片含水量相关性高,为最优植被指数,其建立的茶树叶片水分高光谱估算模型具有较高的预测精度(y=0.245x-0.241,R2=0.854,RMSE=0.001),并且实测值与预测值具有较好的一致性。因此,该研究可为茶树的水分精细化管理提供依据,并可为基于高光谱信息构建复杂环境条件下的水分估算高精度模型提供新思路。  相似文献   

12.
基于光谱-空间特征的黄茶多酚含量估算模型   总被引:1,自引:0,他引:1  
茶多酚是黄茶中的重要成分之一,具有保健和药用功效。准确估测茶多酚含量对茶叶品质鉴定和定量分析具有重要的意义。学者们已经利用电子鼻、电子舌、高光谱和近红外技术开展了茶多酚的估测研究,取得了良好的效果。然而,由于缺乏空间特征,难以满足黄茶内外品质综合判断的要求。随着高光谱成像系统的发展,尽管基于灰度共生矩阵的茶叶成分估测已经被证实取得较好的效果,但在实际应用中仍然存在一些障碍。一方面,分辨率较低时,图像的纹理特征不会有显著差异,并且少数特征无法充分地解译高光谱图像,从而导致模型估测效果较差。另一方面,分辨率较高时,特征的增加会导致模型更复杂。因此,在保留高光谱图像原始信息的前提下,有必要进一步挖掘高光谱图像的潜在特征,尤其是纹理的细节部分。因此,提出了一种融合光谱和空间特征的模型来提高茶多酚估测的准确性。首先,利用连续小波变换提取光谱信息的小波系数;其次,根据不同尺度的小波系数能量优选小波系数特征,分别是第4尺度的959和1 561 nm,第5尺度的1 321,1 520和1 540 nm,以及第6尺度的1 202和1 228 nm;再者,基于小波系数能量之和优选2个特征波长,分别是1 102和1 309 nm;然后,根据特征波长对应的高光谱图像分别提取灰度共生矩阵和小波纹理。最后,分别利用小波系数特征、灰度共生矩阵、小波纹理和他们的组合构建黄茶多酚含量的估测模型。通过对五种黄茶的分析和验证,比较基于不同特征的不同模型估测效果,包括偏最小二乘回归、支持向量回归和随机森林方法。结果表明,融合小波系数特征,共生矩阵和小波纹理的支持向量回归模型效果最佳,校正集的R2为0.933 0,验证集的R2为0.823 8。因此,所提出的模型能有效的提高茶多酚含量的预测精度,为预测茶叶的其他成分提供了技术基础。  相似文献   

13.
茶是世界上最受欢迎的饮料之一,而氮素(N)是影响茶叶品质的主要成分之一,因此快速准确地估算N素含量至关重要。由于测定N含量的化学方法繁琐耗时,利用高光谱对茶鲜叶中N含量进行预测,利用连续小波转换(CWT)提取的小波系数,探究CWT不同分解层数对于N素含量的估测能力,并讨论了不同波长选择算法所建模型的预测效果。首先,采集广东省英德市茶园的151个茶鲜叶样品高光谱数据,将获得的原始光谱通过卷积平滑(SG)、去趋势(Detrending)、一阶导数(1st)、多元散射校正(MSC)和标准正态变量变换(SNV)五种预处理方法进行预处理并作为参考。其次,采用连续小波对原始光谱进行初步处理生成多尺度小波系数,并进行相关性分析, 分别利用连续投影算法(SPA)、竞争性自适应加权采样法(CARS)和变量组合集群分析(VCPA)方法进一步优化CWT变换后光谱数据的变量空间,最后,以特征变量为输入使用PLSR建立了N素定量监测模型,并对比不同尺度不同方法估算N素的效果。结果表明,连续小波分析方法可有效提升茶鲜叶光谱对N素含量的估测能力,明显优于常规光谱处理方法。经连续小波分解后,对茶鲜叶N素的预测能力随分解尺度的增加整体呈逐步降低的趋势,其中在1~6尺度连续小波变换后的光谱与茶鲜叶N素存在良好的相关性,表明小尺度的连续小波分解可有效应用于茶鲜叶N含量的监测。基于CWT(1)-VCPA方法建立的模型精度最高,且变量数相比于全波段减少了99.34%,其建模与预测R2达到0.95和0.90,相比于传统光谱处理方法,精度提升了11% ,证明CWT-VCPA可以有效降低光谱维度并大幅提升模型精度。实现了茶叶N素含量的高效量化预测,为评估茶叶的其他成分提供了可靠技术参考。  相似文献   

14.
为了实现对茶叶病害的准确预测,避免病害特征提取过程中对茶叶的二次破坏,利用荧光透射技术对茶叶赤叶病叶片的荧光透射光谱特性展开研究。实验采集了健康茶叶叶片样本45个、赤叶病初期叶片样本60个及赤叶病中期叶片样本60个,并按照2∶1的比例划分成训练集和预测集样本数,通过荧光透射手段利用高光谱仪器采集这些叶片的原始荧光透射光谱。通过对这3组叶片样本平均光谱强度曲线的分析,证实了利用荧光透射光谱信息对这3种病害类型叶片进行分类的可行性。然后使用多项式平滑(savitzky-golay, S-G)方法对原始光谱进行平滑和降噪处理。最后采用竞争性自适应重加权抽样法(competitive adaptive reweighted sampling, CARS)对预处理后的光谱数据进行特征波长的选取。经过50次加权采样后,最终选取出4个特征波长,分别为:463,512,586和613 nm。为了最大化提取样本的病害特征信息,强化分类器输入病害特征值的典型性,使用高光谱反射技术,采集4个特征波长下的高光谱图像,分别使用2种不同的纹理提取算法提取病害叶片图像的纹理信息进行对比分析。首先利用灰度共生矩阵(GLCM)提取4幅图像的纹理信息,分别计算4个方向的灰度共生矩阵(0°,45°,90°及135°),然后计算5个共生矩阵的均值和方差。为了提高鲁棒性,取4幅图像纹理信息的平均值作为该叶片的纹理特征值,最终得到10个特征值。利用LBP(local binary patterns)算法获取特征波长下高光谱图像的纹理信息,并使用Uniform模式对LBP模型进行降维,最终每幅图像得到944个维度的LBP特征值,同样取4幅图像的平均值作为该叶片的LBP纹理特征值。最后通过极限学习机(ELM)分别建立特征光谱联合灰度共生矩阵纹理信息及LBP算子纹理信息的预测模型,由于模型的输入特征值不在一个量纲,首先对输入特征值进行归一化处理,然后再定义模型的输出标签,即健康叶片的预测模型输出为1,赤叶病早期为2,中期为3。实验测得基于CARS-GLCM-ELM模型的预测准确率为81.82%,基于CARS-LBP-ELM模型的预测准确率为85.45%,说明利用荧光透射光谱联合LBP算子纹理信息预测效果更好。由于没有达到预期效果,利用Softplus函数对ELM的隐含层激活函数进行了优化,替换掉原来的Sigmod函数,优化后的模型预测分类正确率达到92.73%,基本达到了预期效果。该研究将病害叶片的荧光光谱信息和对应特征波长下高光谱图像的纹理信息进行了融合,研究结果可为茶叶病害的快速、准确预测提供一定的参考价值。  相似文献   

15.
利用高光谱图像技术评判茶叶的质量等级   总被引:19,自引:0,他引:19  
针对茶叶品质无损检测时内外品质难以同时兼顾的问题,利用高光谱图像技术检测茶叶质量.设计一套基于光谱仪的高光谱图像系统采集数据;通过主成分分析,从海量数据中优选出三个波长段的特征图像;从每个特征图像中分别提取平均灰度级、标准方差、平滑度、三阶矩、一致性和熵等6个基于统计矩的纹理特征参量,每个样本共有18个特征变量;再通过主成分分析对这18个特征变量进行压缩,提取8个主成分因子建立基于反向传播神经网络的茶叶等级判别模型.模型训练时的总体回判识别率为97%;预测时总体识别率为94%.结果表明,高光谱图像技术可以用于茶叶质量等级水平的评判.  相似文献   

16.
氮素(nitrogen,N)是果树生长发育的必需重要元素,及时准确地无损检测果树的氮素水平对果实增产、合理施肥以及减少环境污染等具有重要意义。研究了基于高光谱成像技术进行柑橘冠层含氮量预测及可视化的可行性。实验采用高光谱成像光谱仪ImSpector V10E(Spectral imaging Ltd.,Oulu,Finland)分别采集柑橘叶片实验室样本和野外整个植株冠层的高光谱图像。利用ENVI软件提取每个叶片样本感兴趣区域(ROI)的平均光谱数据作为整个样本的光谱数据进行分析,同时采用杜马斯燃烧法快速定氮仪(ElementarAnalytical, Germany)测定叶片样本的含氮量。通过简单相关分析和双波段植被指数(TBVI)的获取,建立基于光谱数据的含氮量预测模型。计算表明,基于811和856 nm的双波段植被指数(TBVI)能够建立最佳的柑橘叶片含氮量预测模型(R2=0.607 1)。在此基础上,计算上述TBVI的冠层图像,把基于该TBVI的含氮量预测模型导入到TBVI图像中计算生成冠层含氮量的预测分布图。图中直观地显示柑橘嫩叶、中叶、老叶的含氮水平从高到低分布,实现了冠层含氮量的可视化。结果表明,利用高光谱成像技术可以实现柑橘冠层氮素水平的检测和诊断,这为实施基于每颗果树信息的变量施肥技术提供了参考信息。  相似文献   

17.
高光谱成像技术的油菜叶片氮含量及分布快速检测   总被引:4,自引:0,他引:4  
应用高光谱成像技术实现了油菜苗-花-角果整个生命期叶片氮含量的快速检测和氮素水平分布的可视化。采集三个生长时期共计420个叶片样本的高光谱图像信息(380~1 030 nm),提取图像中感兴趣区域的平均光谱数据,经过不同光谱预处理后,利用连续投影算法(SPA)选择特征波长,将提取的12个特征波长(467,557,665,686,706,752,874,879,886,900,978和995 nm)作为自变量,叶片氮含量作为因变量,分别建立偏最小二乘法(PLS)和最小二乘-支持向量机(LS-SVM)模型。SPA-PLS和SPA-LS-SVM模型对叶片氮含量的预测相关系数RP分别为0.807和0.836,预测均方根误差RMSEP分别为0.387和0.358。高光谱图像中的每一个像素点都有对应的光谱反射值,利用结构简单、更易提取回归系数的SPA-PLS模型,快速计算出12个特征波长下高光谱图像中每个像素点对应的氮含量预测值,结合像素点的空间位置生成氮素浓度的叶面分布图。可视化分布图详细且直观的反应出同一叶片内部或不同叶片之间氮含量的差异。结果表明,应用高光谱成像技术分析整个油菜生长期的叶片氮含量及其可视化分布是可行的。  相似文献   

18.
花叶病是苹果叶片常见的病毒性病害,患病叶片的花青素含量出现异常。以叶片花青素含量作为病害严重程度的定量化指标,使用高光谱成像技术获取感染花叶病的苹果叶片的高光谱图像,分析叶片的光谱特征,通过任意两个波段的反射率的不同数学组合,构建并筛选对染病叶片花青素含量高度敏感的最优光谱指数,进而建立苹果叶片花青素含量的高光谱估算模型,最终实现苹果叶片花青素含量分布状况的可视化表达。结果表明,随着病害严重程度的增大,苹果叶片的花青素含量升高;叶片染病区域的光谱反射率在整个可见光区域明显增加,而且出现了红边蓝移现象。通过两两波段组合构建的三种光谱指数(NDSI(770,722),RSI(717,770),DSI(581,520))与苹果叶片花青素含量的相关系数绝对值均达到0.8以上。在构建的四种苹果叶片花青素含量估算模型中,选用三个光谱指数为参数、并使用偏最小二乘回归方法建立的Anth-PLSR模型精度最高(R2=0.823, RMSE=0.056)。采用Anth-PLSR模型对患病叶片的高光谱图像进行逐像元解算,得到苹果花青素含量分布图。进一步通过叶片花青素含量分布图计算苹果叶片整叶的花青素含量平均值,作为苹果叶片健康程度的定量化指标。此外,通过提取整叶光谱均值、使用同样模型可简洁有效地估算苹果整叶花青素含量平均值。为苹果叶片花叶病病害监测提供了一种直观、快速的技术手段。  相似文献   

19.
高光谱成像具有快速无损和图谱合一的特点,每个波段都会呈现一幅图像,每个像素点都显示一条光谱曲线,不仅可以获取样本的光谱信息,还可以表征物体的空间信息,目前在诸多领域展现出极大的应用价值。采用高光谱成像实现土壤中石油烃含量分布的可视化。制备不同石油烃含量的砖红壤样本,分为建模样本和预测样本。采集高光谱图像,为避免图像背景的干扰,采用掩膜的方法进行背景剔除。之后提取建模样本中感兴趣区域的平均光谱,采用连续投影算法筛选特征变量,基于提取的特征变量,一方面建立MLR预测模型,另一方面从预测样本中提取特征波段的高光谱图像。最后,将特征图像上像素点的数据代入模型,得到石油烃的含量分布情况。通过图像处理的方法,不同的含量赋予不同的颜色,实现砖红壤中石油烃含量分布的可视化。研究结果表明,采用高光谱成像与图像处理方法能够初步实现砖红壤中石油烃含量分布的可视化,为以后大范围地识别和反演土壤中石油烃含量提供了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号