首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
应用高光谱成像技术鉴别绿茶品牌研究   总被引:4,自引:0,他引:4  
应用高光谱成像技术,基于光谱主成分信息和图像信息的融合实现名优绿茶不同品牌的鉴别。首先采集6个品牌名优绿茶在380~1 023 nm波长范围的512幅光谱图像,然后提取并分析绿茶样本的可见近红外光谱响应特性,结合主成分分析法找到了最能体现这6类样本差异的2个特征波段(545和611 nm),并从这2个特征波段图像中分别提取12个灰度共生矩阵纹理特征参量包括中值、协方差、同质性、能量、对比度、相关、熵、逆差距、反差、差异性、二阶距和自相关,最后融合这12个纹理特征和三个主成分特征变量得到名优绿茶品牌识别的特征信息,利用LS-SVM建立区分模型,预测集识别率达到了100%,同时采用ROC曲线的评估方法来评估分类模型。结果表明综合应用灰度共生矩阵变量和光谱主成分变量作为LS-SVM模型输入可实现对绿茶品牌的鉴别。  相似文献   

2.
基于高光谱成像技术应用光谱及纹理特征识别柑橘黄龙病   总被引:2,自引:0,他引:2  
讨论了基于高光谱成像技术光谱及纹理特征在识别早期柑橘黄龙病中的应用。使用一套近地高光谱成像系统采集了176枚柑橘叶片的高光谱图像作为实验样品,其中健康叶片60枚,黄龙病叶片60枚,缺锌叶片56枚。手工选取每幅叶片高光谱图像的病斑位置作为样品感兴趣区域(regions of interest, ROI),计算其平均光谱反射率,并以此作为样品的反射光谱,光谱范围为396~1 010 nm。样品光谱分别经过主成分分析(PCA)及连续投影算法(SPA)进行数据降维,再结合最小二乘支持向量机(LS-SVM)分类器建立分类模型。相比原始光谱,由PCA选取的前四个主成分及SPA选取的一组最佳波长组合(630.4,679.4,749.4和899.9 nm)建立的模型拥有更好的分类识别能力,其对三类柑橘叶片平均预测准确率分别为89.7%和87.4%。同时,从被选四个波长的每幅灰度图像中提取6个灰度直方图的纹理特征以及9个灰度共生矩阵的纹理特征再次构建分类模型。经SPA优选的10个纹理特征值进一步提高了分类效果,对三类柑橘叶片的识别正确率达到了100%,93.3%和92.9%。实验结果表明,同时包含光谱信息及空间纹理信息的高光谱图像在柑橘黄龙病的识别中显示了很大的潜力。  相似文献   

3.
讨论了基于高光谱成像技术光谱及纹理特征在识别早期柑橘黄龙病中的应用。使用一套近地高光谱成像系统采集了176枚柑橘叶片的高光谱图像作为实验样品,其中健康叶片60枚,黄龙病叶片60枚,缺锌叶片56枚。手工选取每幅叶片高光谱图像的病斑位置作为样品感兴趣区域(regions of interest,ROI),计算其平均光谱反射率,并以此作为样品的反射光谱,光谱范围为396~1 010nm。样品光谱分别经过主成分分析(PXA)及连续投影算法(SPA)进行数据降维,再结合最小二乘支持向量机(LS-SVM)分类器建立分类模型。相比原始光谱,由PCA选取的前四个主成分及SPA选取的一组最佳波长组合(630.4,679.4,749.4和899.9 nm)建立的模型拥有更好的分类识别能力,其对三类柑橘叶片平均预测准确率分别为89.7%和87.4%。同时,从被选四个波长的每幅灰度图像中提取6个灰度直方图的纹理特征以及9个灰度共生矩阵的纹理特征再次构建分类模型。经SPA优选的10个纹理特征值进一步提高了分类效果,对三类柑橘叶片的识别正确率达到了100%,93.3%和92.9%。实验结果表明,同时包含光谱信息及空间纹理信息的高光谱图像在柑橘黄龙病的识别中显示了很大的潜力。  相似文献   

4.
为实现玉米杂交种的自动化快速分选,提出了应用少量近红外波段光对玉米种子进行成像,获取种子光谱图像并提取纹理特征来鉴定玉米杂交种纯度的方法。采集5个玉米品种的母本和杂交种在4个短波近红外波段的透射光谱图像和4个中波近红外波段的反射光谱图像,采用白板标定校正光谱图像,运用中值滤波、大津法去除噪声,从背景中分割出种子,应用灰度分布统计,灰度共生矩阵提取纹理特征,对同一粒种子拼接其在各波长处的特征数据,应用主成分分析和正交线性判别分析降维并获得子空间的最佳可分性,使用支持向量机建立透射和反射光谱图像纯度鉴定模型。透射和反射模型对5个玉米品种平均正确鉴别率均在85%以上。表明利用少量波段的近红外光谱图像鉴定玉米杂交种纯度是可行的。  相似文献   

5.
高光谱图像包含了大量的光谱信息和图像信息,采用高光谱成像技术对牛肉品种进行识别。获取可见-近红外(400~1000 nm)光谱范围内的安格斯牛、利木赞牛、秦川牛、西门塔尔牛、荷斯坦奶牛五个品种共252个牛肉样本的高光谱图像。在ENVI软件中对高光谱图像进行阈值分割并构建掩膜图像,获取样本的感兴趣区域(ROI),并结合伪彩色图对牛肉样本的反射率指数进行可视化表达;采用Kennard-Stone(KS)法对样本集进行划分以提高模型的预测性能;对原始光谱采用卷积平滑(SG)、区域归一化(Area normalize)、基线校正(Baseline)、一阶导数(FD)、标准正态变量变换(SNV)及多元散射校正(MSC)等6种方法进行预处理;采用竞争性自适应重加权算法(CARS)提取特征波长。然后利用颜色矩对不同牛肉样本的颜色特征进行提取;对原始光谱图像进行主成分分析,结合灰度共生矩阵(GLCM)算法,提取主要纹理特征。最后结合偏最小二乘判别(PLS-DA)算法建立牛肉样本基于特征波长、颜色特征以及纹理特征的识别模型。KS法将牛肉样本划分为校正集190个,预测集62个;将未经预处理的光谱数据与经过6种不用预处理的光谱数据进行建模分析,结果发现经FD法处理后的光谱数据所建模型的识别率最高;结合CARS法对经FD法预处理后的光谱数据进行特征波长提取,共提取出22个波长;利用颜色矩和GLCM算法分别提取出每个牛肉样本的9个颜色特征、48个纹理特征。将特征波长数据与颜色、纹理特征信息进行融合建模,结果表明,基于特征光谱+纹理特征的模型识别效果最佳,其校正集与预测集识别率分别为98.42%和93.55%,均高于特征光谱数据模型识别率,说明融合纹理特征后使样本分类信息的表达更加全面;融合颜色特征后模型的校正集识别率均有所增加,但预测集识别率稍逊,颜色特征虽携带了部分有效信息,但这些信息与牛肉样本的相关性不大。因此,寻找与牛肉样本相关性更大的颜色特征是提高模型识别率的重要途径之一。该研究结果为牛肉品种的快速无损识别提供了一定的参考。  相似文献   

6.
基于光谱-空间特征的黄茶多酚含量估算模型   总被引:1,自引:0,他引:1  
茶多酚是黄茶中的重要成分之一,具有保健和药用功效。准确估测茶多酚含量对茶叶品质鉴定和定量分析具有重要的意义。学者们已经利用电子鼻、电子舌、高光谱和近红外技术开展了茶多酚的估测研究,取得了良好的效果。然而,由于缺乏空间特征,难以满足黄茶内外品质综合判断的要求。随着高光谱成像系统的发展,尽管基于灰度共生矩阵的茶叶成分估测已经被证实取得较好的效果,但在实际应用中仍然存在一些障碍。一方面,分辨率较低时,图像的纹理特征不会有显著差异,并且少数特征无法充分地解译高光谱图像,从而导致模型估测效果较差。另一方面,分辨率较高时,特征的增加会导致模型更复杂。因此,在保留高光谱图像原始信息的前提下,有必要进一步挖掘高光谱图像的潜在特征,尤其是纹理的细节部分。因此,提出了一种融合光谱和空间特征的模型来提高茶多酚估测的准确性。首先,利用连续小波变换提取光谱信息的小波系数;其次,根据不同尺度的小波系数能量优选小波系数特征,分别是第4尺度的959和1 561 nm,第5尺度的1 321,1 520和1 540 nm,以及第6尺度的1 202和1 228 nm;再者,基于小波系数能量之和优选2个特征波长,分别是1 102和1 309 nm;然后,根据特征波长对应的高光谱图像分别提取灰度共生矩阵和小波纹理。最后,分别利用小波系数特征、灰度共生矩阵、小波纹理和他们的组合构建黄茶多酚含量的估测模型。通过对五种黄茶的分析和验证,比较基于不同特征的不同模型估测效果,包括偏最小二乘回归、支持向量回归和随机森林方法。结果表明,融合小波系数特征,共生矩阵和小波纹理的支持向量回归模型效果最佳,校正集的R2为0.933 0,验证集的R2为0.823 8。因此,所提出的模型能有效的提高茶多酚含量的预测精度,为预测茶叶的其他成分提供了技术基础。  相似文献   

7.
提出了基于高光谱成像技术的猪肉嫩度检测方法。利用高光谱成像系统获取78个猪肉样本在400~1100nm范围的高光谱图像数据;通过主成分分析高光谱数据进行降维,从中优选出3幅特征图像,并从每幅特征图像中分别提取对比度、相关性、角二阶矩和一致性等4个基于灰度共生矩阵的纹理特征变量,这样每个样本共有12个特征变量,再通过主成分分析提取6个主成分变量,并参照剪切力方法测得的样本嫩度等级结果,利用神经网络方法构建猪肉嫩度等级判别模型。模型对校正集样本的回判率为96.15%,预测集样本的判别率为80.77%。研究表明高光谱图像技术可以用于猪肉嫩度等级水平的检测。  相似文献   

8.
水果货架期是影响水果品质的重要因素之一,快速无损检测货架期是消费者、食品加工企业日益关心的问题,为了探讨水果不同货架期的预测判别方法的可行性,以不同货架期脐橙为实验样品,运用高光谱成像技术并结合化学计量学方法对不同货架期脐橙进行了预测判别。分别采集脐橙货架期第0天、第7天、14天后的脐橙样本高光谱图像,并进行高光谱图像校正。从光谱角度,提取脐橙样本的平均光谱,每条光谱有176个波长点;从图像角度,先提取脐橙样本的RGB和HSI颜色空间中R,G,B,H,S和I特征值,得到6个分量的均值,然后提取灰度共生矩阵的能量、熵、对比度、逆差矩、相关性的5个图像纹理信息,一共11个图像特征值,并将图像特征进行归一化处理;结合光谱和图像信息,即176个原始光谱和11个图像信息一共187个特征值。利用光谱信息、图像信息、光谱和图像融合信息进行建模,分别建立偏最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型。当原始176个光谱变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为5.33%。当11个图像特征变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率较高为20%。当原始176个光谱变量和11个图像特征变量的融合特征作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为1.33%。实验结果表明,以光谱和图像融合信息建立LS-SVM模型效果最优,提高了对不同货架期脐橙识别的正确率,可实现对不同货架期的脐橙准确有效分类识别,误判率为1.33%。利用高光谱成像技术对不同货架期脐橙进行快速判别,对消费者购买新鲜水果和水果深加工企业具有一定程度的理论指导,也为后期相关仪器研发奠定了基础。  相似文献   

9.
基于高光谱图像的即食海参新鲜度无损检测   总被引:1,自引:0,他引:1  
新鲜度是即食海参加工品质调控和贮藏品质监控的关键指标。针对感官评定和现有理化检测无法满足即食海参产品大批量、标准化、工业化生产问题,提出了一种基于高光谱图像的即食海参新鲜度快速无损检测方法,通过图像主成分分析和波段比运算相结合,优选特征波长和图像;依据海参腐败机理,建立图像纹理特征与即食海参新鲜度等级间的关联模型,实现即食海参新鲜度无损、快速评价。首先针对高光谱图像巨大的数据量展开降维研究。根据即食海参体壁光谱吸收特性,以具有明显化学吸收特征的波长(474和985 nm)为分界点,获得包括全检测波段(400~1 000 nm)在内的六个待处理波段,通过分段图像主成分分析实现待测波段的优选,利用权重系数和波段比图像运算,最终将686和985 nm波段比图像确定为特征图像。面向特征图像的感兴趣区域(ROI),构建灰度共生矩阵(gray-level co-occurrence matrix, GLCM)、灰度梯度共生矩阵(gray-gradient co-occurrence matrix, GGCM)、改进的局部二元模式纹理描述子(local binary pattern,LBP),分别提取纹理参数作为输入,以挥发性盐基氮(total volatile basic nitrogen, TVB-N)检测为标准,建立经粒子群优化的BP 神经网络(back propagation,BP)即食海参新鲜度判别模型,新鲜度等级判别准确率分别为90%,95%和80%。结果表明,即食海参高光谱图像灰度梯度共生矩阵的纹理特征用于新鲜度判别效果较好。为即食海参新鲜度快速无损检测方法研究和仪器开发提供了理论基础和数据支持。  相似文献   

10.
新鲜度是即食海参加工品质调控和贮藏品质监控的关键指标。针对感官评定和现有理化检测无法满足即食海参产品大批量、标准化、工业化生产问题,提出了一种基于高光谱图像的即食海参新鲜度快速无损检测方法,通过图像主成分分析和波段比运算相结合,优选特征波长和图像;依据海参腐败机理,建立图像纹理特征与即食海参新鲜度等级间的关联模型,实现即食海参新鲜度无损、快速评价。首先针对高光谱图像巨大的数据量展开降维研究。根据即食海参体壁光谱吸收特性,以具有明显化学吸收特征的波长(474和985nm)为分界点,获得包括全检测波段(400~1 000nm)在内的六个待处理波段,通过分段图像主成分分析实现待测波段的优选,利用权重系数和波段比图像运算,最终将686和985nm波段比图像确定为特征图像。面向特征图像的感兴趣区域(ROI),构建灰度共生矩阵(gray-level co-occurrence matrix,GLCM)、灰度梯度共生矩阵(gray-gradient co-occurrence matrix,GGCM)、改进的局部二元模式纹理描述子(local binary pattern,LBP),分别提取纹理参数作为输入,以挥发性盐基氮(total volatile basic nitrogen,TVB-N)检测为标准,建立经粒子群优化的BP神经网络(back propagation,BP)即食海参新鲜度判别模型,新鲜度等级判别准确率分别为90%,95%和80%。结果表明,即食海参高光谱图像灰度梯度共生矩阵的纹理特征用于新鲜度判别效果较好。为即食海参新鲜度快速无损检测方法研究和仪器开发提供了理论基础和数据支持。  相似文献   

11.
高光谱成像的柑橘病虫害叶片识别方法   总被引:1,自引:0,他引:1  
为监测柑橘生长状况,实现病虫害无损识别,利用高光谱成像技术和机器学习方法进行柑橘病叶分类研究。使用高光谱成像仪采集46片柑橘正常叶、46片溃疡病叶、80片除草剂危害叶、51片红蜘蛛叶和98片煤烟病叶的高光谱图像,在478~900 nm光谱范围内对每个叶片一个或多个发病区提取5×5的感兴趣区域(ROI),将ROI内每个像素的反射率值作为光谱信息,则一个ROI得到25个光谱信息样本,最终五类叶片共得到13250个光谱样本。利用随机法将全部样本划分为9 938个训练集和3 312个测试集。分别采用一阶求导(1stDer)、多元散射校正(MSC)和标准正态变换(SNV)三种方法对原始光谱信息进行预处理,对不同预处理方法后的数据采用主成分分析法(PCA)提取特征波长。1st Der预处理后得到7个特征波长,分别是520.2,689.0,704.8,715.4,731.2,741.8和757.6 nm;MSC和SNV预处理后得到7个相同的特征波长,分别是551.9,678.5,704.8,710.1,725.9,731.2和757.6 nm;原始光谱得到7个特征波长,分别是525.5,678.5,710.1,720.7,725.9,757.6和762.9 nm。分析PCA后的样本分布散点图可知,正常叶片、溃疡病叶片和红蜘蛛叶片样本有一定程度聚类,除草剂叶片和煤烟病叶片样本有大量重叠,仅依据PCA不能完成病虫害叶片的识别。对全波段(FS)和PCA特征波长数据在不同预处理方法下进行支持向量机(SVM)和随机森林(RF)建模,结果表明:数据在1stDer预处理方法下识别效果最佳,1st Der-FS-SVM模型总分类精度(OA)为95.98%,Kappa系数为0.948 2,1st Der-FS-RF模型OA为91.42%,Kappa系数为0.889 2,1stDer-PCA-SVM模型OA为90.82%,Kappa系数为0.881 6,1stDer-PCA-RF模型的OA为91.79%,Kappa系数为0.894;对PCA选择的特征波长数据建模,SVM和RF模型下识别率均达到84%,全波段下模型识别率在88%以上,FS数据建模效果优于PCA特征波长。研究结果表明,高光谱成像技术结合机器学习方法进行柑橘叶片分类是可行且有效的,为柑橘病虫害的无损准确识别提供理论根据。  相似文献   

12.
减少叶面滞尘对茶树叶片水分有效光谱信息提取的干扰,有利于建立更加稳健的茶树叶片水分高光谱估算模型。以“舒茶早”为研究对象,通过田间随机采集鲜叶样品,测定叶片原始光谱反射率、含水量以及滞尘率。比较分析滞尘对茶树叶片原始光谱的影响,分别基于归一化计算与比值计算方法构建新波段植被指数,并利用相关系数法筛选叶片水分含量相关性最高的新波段植被指数,结合相对变率分析获取滞尘对叶片水分估算影响不敏感的待选指数。通过分析不同滞尘条件下新建植被指数和已有水分指数与滞尘的响应关系,筛选出滞尘影响下茶树叶片水分估算的最优植被指数,最终构建茶树叶片水分估算的高精度模型。结果表明:(1)位于711~1 378 nm波段范围的叶片光谱反射率受滞尘影响呈现显著降低的趋势,随着滞尘率增大光谱反射率减小,且无尘叶片反射率与有尘状态反射率具有明显聚类现象,相同状态下的不同叶片反射率差异性极显著。(2)新波段植被指数、已有水分指数与茶树叶片含水量之间的相关性以及基于该指数构建的茶树叶片水分估算模型的精度,在滞尘影响下均呈现明显的下降趋势。(3)在滞尘混合状态下,以1 298和1 325 nm为中心波段的新建比值植被指数对滞尘敏感性最低,且与叶片含水量相关性高,为最优植被指数,其建立的茶树叶片水分高光谱估算模型具有较高的预测精度(y=0.245x-0.241,R2=0.854,RMSE=0.001),并且实测值与预测值具有较好的一致性。因此,该研究可为茶树的水分精细化管理提供依据,并可为基于高光谱信息构建复杂环境条件下的水分估算高精度模型提供新思路。  相似文献   

13.
北京持续推进增彩延绿科技示范工程,彩叶植物在城市园林建设和人居环境改善方面发挥着越来越重要的作用。如果能够利用高光谱技术实现快速、无损地观测城市彩叶植物区域分布特点及其生长特征变化,可为进一步优化城市彩叶植物布局,加快城市彩叶植物系统建设提供重要理论依据和数据支撑。高光谱遥感技术的快速发展,不仅提供了大量地被植物光谱信息,而且也提高了光谱分辨率及其响应范围。植物光谱具有一系列特征吸收谱带,能够指示不同树种间的差异,是高光谱进行树种识别的基础。以北京城市常见不同色系彩叶植物15种为研究对象,运用SR-3501便携式地物光谱仪分析了不同色系植物叶片秋季高光谱反射曲线特征;通过对原始光谱数据进行微分变换和特征参数提取,进一步研究了不同色系植物反射特征波段及特征参数差异性和变化规律。结果表明:大叶黄杨具备典型绿色植被光谱曲线特征,即呈“峰”和“谷”的变化特征,紫色系植物表现为同绿色系植物近似的光谱反射特征,红色系植物与黄色系植物光谱反射特征相似;从光谱吸收特征参数角度分析,不同色系植物绿峰/红峰位置表现为红色系植物>紫色系植物>黄色系植物>绿色系植物,而绿峰/红峰反射率、红谷位置和红谷反射率均表现为黄色系植物>红色系植物>紫色系植物>绿色系植物;不同色系植物叶片光谱三边特征参数具有一定的规律性,三边参数可以作为区分不同彩色叶植物与绿色系植物的特征参数,其中红边幅值与红边面积、黄边幅值与黄边面积、蓝边幅值与蓝边面积可分别作为紫色系植物、红色系植物与黄色系植物区别于其他色系植物的重要光谱特征参数。  相似文献   

14.
偏振-高光谱多维光信息的番茄叶片营养诊断   总被引:1,自引:0,他引:1  
以Venlo型温室中无土栽培模式下自行培育的25%,50%,75%,100%,150%五个梯度水平的氮、磷、钾营养胁迫样本为研究对象,利用高光谱成像系统以及课题组自行研发的偏振反射光谱测量分析系统分别采集不同氮磷钾营养水平番茄叶片的偏振光谱和高光谱数据。通过扫描电镜分析阐明营养胁迫叶片非光滑表面的凹凸和质地发生的一系列变化与偏振反射辐射之间具有一定的联系。由斯托克斯公式将偏振光谱换算成偏振度后,提取偏振度与氮磷钾实测值之间的各4个偏振度特征;同时将高光谱数据经过主成分分析降维并确定氮磷钾各4个特征波长,再通过相关分析法提取这4个特征波长下的各8个高光谱图像纹理特征。偏振度特征与高光谱纹理特征相加累计氮磷钾各12个特征作为支持向量回归(SVR)的输入变量。对这12个特征变量进行最大—最小值归一化后,采用SVR建立番茄氮磷钾营养水平的定量诊断模型,求得氮的相关系数r=0.961 8,均方根误差RMSE=0.451;磷的相关系数r=0.916 3,均方根误差RMSE=0.620;钾的相关系数r=0.940 6,均方根误差RMSE=0.494。研究结果表明采用偏振反射光谱结合高光谱的多维光信息融合技术能够建立精度较高的番茄营养水平预测模型,具有较好的诊断作用,对于提高模型的精度和专用仪器的开发具有一定的指导意义,为番茄养分含量的快速检测提供了新的思路。  相似文献   

15.
高光谱成像技术的不同叶位尖椒叶片氮素分布可视化研究   总被引:3,自引:0,他引:3  
为了快速、准确、直观估测尖椒叶片的营养水平和生长状况,利用高光谱成像技术结合化学计量学方法对不同叶位尖椒叶片氮素含量(nitrogen content, NC)的分布进行了可视化研究。按照叶片位置采摘尖椒叶片,并采集高光谱数据,然后测定相应叶片的SPAD和NC。提取出叶片的光谱信息后,采用Random-frog(RF)算法提取特征波段,分别选出5条与10条特征波段。针对选取的特征波段和全波段,分别建立偏最小二乘回归(partial leastsquares regression, PLSR)模型,结果表明采用特征波段建立的PLSR模型性能较好(SPAD:RC=0.970, RCV=0.965, RP=0.934; NC: RC=0.857, RCV=0.806, RP=0.839)。根据预测模型计算尖椒叶片高光谱图像每个像素点的SPAD与NC,从而实现SPAD与NC的可视化分布。事实上叶片的SPAD在一定程度上可以反映含氮量,二者分布图的变化趋势基本一致,验证了可视化结果的正确性。结果表明:运用高光谱成像技术可以实现对不同叶位尖椒叶片氮素分布的可视化研究,这为监测植物的生长状况和养分分布提供理论依据。  相似文献   

16.
稻干尖线虫病胁迫水稻叶片波谱响应特征及识别研究   总被引:2,自引:0,他引:2  
对植被病害的精确识别是采取植保措施的前提,同时对喷施农药也具有积极的指导作用。比较了受稻干尖线虫胁迫水稻叶片和健康叶片色素含量、光谱反射率、高光谱特征参数,受害水稻叶片与健康叶片相比,叶绿素和类胡萝卜素含量分别降低18%和22%;光谱反射率在蓝紫光、绿光和红光谱段分别增加1.5,1和2.3倍,在近红外和短波红外区域分别降低约28.9%和26.3%,红边和蓝边分别蓝移约8和10nm,绿峰和红谷分别红移约8.5和6 nm。以红边面积和红边位置作为C-SVC(非线性软间隔分类机)的输入向量,对受害和健康叶片进行识别,精度为100%。研究表明,水稻叶片光谱对病害胁迫具有显著的响应特征,利用C-SVC对受害和健康叶片进行辨别的方法是可行的。  相似文献   

17.
高光谱图谱融合检测羊肉中饱和脂肪酸含量   总被引:3,自引:0,他引:3  
为探究高光谱成像(400~1000 nm)对羊肉中饱和脂肪酸(SFA)含量检测的可行性,提出一种基于特征光谱信息和图像纹理特征融合的SFA含量预测模型,实现对羊肉中SFA含量的快速检测及分布可视化。利用分段阈值法构建掩膜图像,获取羊肉样本感兴趣区域(ROI),结合SPXY法对样本集进行划分并对相关光谱信息进行预处理,分别采用连续投影算法(SPA)、变量组合集群分析法(VCPA)和β权重系数法提取特征光谱;通过获取羊肉样本主成分图像,结合灰度共生矩阵(GLCM)算法提取图像纹理信息;分别对特征光谱、图像信息及图谱融合信息建立的偏最小二乘回归(PLSR)与最小二乘支持向量机(LS-SVM)预测模型进行对比分析。利用5种不同对原始光谱数据进行预处理,经SNV法预处理后的光谱其校正集与预测集相关系数分别为0.921和0.875,较原始光谱分别增加了0.001和0.04,均方根误差模型分别为0.244和0.268,较原始光谱模型分别减少了0.003和0.06;对SNV法预处理后的光谱数据进行特征波长提取,SPA法、VCPA法及β权重系数法分别提取出12,10和9个特征波长;获取羊肉样本的前5个主成分图像,选择所含信息量最多的第一主成分图像进行纹理特征提取,依次提取0,45°,90°和135°方向下的能量、熵、同质性和相关性共4个主要纹理特征。利用SPA法提取的特征波长建立的PLSR与LS-SVM模型性能较好,PLSR模型校正集与预测集相关系数分别为0.8849和0.8807,均方根误差分别为0.3001和0.2606;LS-SVM模型校正集与预测集相关系数分别为0.8987和0.8926,均方根误差分别为0.2767和0.2476;图谱信息融合模型中,PLSR模型校正集与预测集相关系数分别为0.9071和0.9078,较特征光谱模型分别增加了0.02和0.03,均方根误差分别为0.3269和0.2992,较特征光谱模型分别增加了0.03和0.04;LS-SVM模型校正集与预测集相关系数分别为0.9206和0.8946,较特征光谱模型分别增加了0.02和0.002,均方根误差分别为0.2519和0.2458,较特征光谱模型分别减少了0.02和0.002。光谱预处理中经SNV法处理后的光谱所建模型性能优于其他预处理方法;采用SPA法提取的12个特征波长简化了光谱模型,提高了模型性能,特征光谱建模的最优方法为SPA-LS-SVM;图谱信息融合模型较特征光谱模型,模型相关系数增加较少,表明图像纹理信息虽携带了部分有效信息,但这些信息与羊肉中SFA含量之间的相关性有待进一步研究。基于图谱信息融合模型的预测性能最优,其次为光谱信息模型。择优选取SPA-PLSR模型计算羊肉样本中每个像素点的SFA含量,利用伪彩色图直观表示了羊肉样本中SFA的含量分布。实现对羊肉样本SFA含量的无损检测及分布可视化表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号