首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
物理学   13篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2009年   2篇
  2008年   3篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
大豆叶面积指数的高光谱估算方法比较   总被引:5,自引:0,他引:5  
叶面积指数(leaf area index,LAI)是重要的生物物理参数,亦是各种生态模型、生产力模型以及碳循环研究等的重要生物物理参量,因此具有重要的研究意义。通过分析大量实测数据,选用归一化植被指数(normalized difference vegetation index,NDVI)和比值植被指数(ratio vegetation index,RVI)、主成分分析(principcal component analysis,PCA)、神经网络(neural network NN)三种方法对大豆使LAI进行了估算,比较分析了三种方法的估算结果。研究结果表明,植被指数法(NDVI,RVI),主成分分析,神经网络方法LAI都取得了较为理想的结果,验证模型的确定性系数分别达0.758和0.753,0.954,0.899,其中主成分分析方法和神经网络方法精度较高,主成分分析方法验证模型的稳定性更好,其验证模型的RMSE为0.267,明显低于两个植被指数(NDVI和RVI的RMSE分别为0.594和0.616)和神经网络(RMSE=0.413)。当叶面积指数较小时,植被指数能够较好地去除土壤、大气等条件影响,并精确估算LAI;当叶面积指数较大时,主成分分析能够弥补植被指数饱和的缺陷,得到很好的LAI估算效果。神经网络受LAI大小的影响效果居中,其对叶面积指数较小和较大时具有一致的估算效果,具有较好的应用潜力。  相似文献   
2.
考虑水分光谱吸收特征的水稻叶片SPAD预测模型   总被引:1,自引:0,他引:1  
叶绿素是植被光合作用的重要色素,传统实验室方法测定叶绿素含量需破坏性取样且操作复杂。通过构建高精度SPAD光谱估算模型,可以实现对水稻叶片叶绿素含量的实时无损监测。以黑龙江省不同施氮水平下水稻为研究对象,采用SVC HR768i型光谱辐射仪共获取移栽后、分蘖期、拔节期、孕穗期、抽穗期共五个关键时期水稻叶片反射光谱数据。光谱探测范围350~2 500 nm。利用自带光源型手持叶片光谱探测器直接测定叶片光谱,光源为内置卤素灯。采用SPAD-502型手持式叶绿素仪同步测定水稻叶片的SPAD值。叶片水分是植物光合作用的基本原料,也间接影响着叶绿素含量。叶片含水量降低则会影响植物正常的光合作用,导致其叶绿素含量随之降低。因此将叶绿素敏感波段与水分吸收范围结合作为SPAD估算的输入量。随机森林模型是一个基于多个分类树的算法。算法在采样的过程中包括两个完全随机的过程,一是有放回抽样,可能会得到重复的样本,二是选取自变量是随机的。因此本文对叶片光谱反射率进行去包络线(CR)处理,综合考虑可见光近红外波段提取水稻叶片反射光谱特征参数和植被指数,综合分析光谱指标与SPAD相关关系,采用随机森林算法构建不同输入量的SPAD高光谱估算模型。结果表明: (1)水稻叶片SPAD与光谱反射率的相关系数在叶绿素敏感波段红波段范围(600~690 nm)、红边范围(720~760 nm)、水分吸收波段范围(1 400~1 490和1 900~1 980 nm)均为0.75以上;(2)在光谱参数与SPAD 的相关分析中,NDVI,DP2与水稻叶片SPAD值相关性最好,相关系数为0.811和0.808;(3)以结合水分光谱信息后的CR(V1, V2, V3, V4)为自变量所建立的随机森林模型精度最高,R2为0.715,RMSE为2.646,可作为水稻叶片叶绿素预测模型。研究结果揭示了不同品种水稻的光谱响应机制,提供了水稻叶片SPAD值高精度反演的技术方法,为监测与调控东北地区水稻正常生育进程提供技术支持。  相似文献   
3.
土壤作为自然界的重要组成部分之一,对生态系统的形成和人类的生存均起着绝对不可忽视的作用,故对于土壤热红外偏振辐射特性的研究,具有十分重要的现实意义。而且,关于土壤在2π空间内的偏振热辐射特性的研究,国内外还未见报道。研究结果表明: 随着探测角的改变,土壤的偏振亮度温度在0°~80°范围内呈现非线性变化,当探测角的变化范围为60°~80°时,其偏振亮度温度随着探测角的增大而呈现明显的上升趋势;不同方位角条件下,土壤的偏振亮度温度会发生改变,在0°~240°范围内,随着方位角的增大而呈现上升趋势,在240°~320°范围内,呈现下降趋势;波段和偏振角对于土壤的偏振亮度温度的变化均具有一定的影响,而且二者的变化曲线的波动幅度都较为平缓;不同土壤类型的偏振辐射亮度温度不同,呈现草甸黑土>淋溶黑钙土>典型黑钙土>草甸风沙土的规律。以上研究为热红外偏振遥感基础理论研究提供重要依据。  相似文献   
4.
基于冠层光谱的水稻穗颈瘟病害程度预测模型   总被引:2,自引:0,他引:2  
对水稻稻瘟病病害程度的定量预测是精准防控的关键,田间冠层尺度的研究可为高光谱传感器提供理论基础。以受穗颈瘟胁迫的水稻为研究对象,采用SVC HR768i型光谱辐射仪在大田中获取灌浆期两个不同时间段的水稻冠层光谱反射率,以水稻发病株数百分比作为病害严重程度指标。冠层光谱数据采用九点平滑预处理,并重采样为1 nm间隔,计算植被指数;经过去包络线和一阶导数光谱变换,提取高光谱特征参数。分析不同时间段的光谱变换、植被指数、高光谱特征参数与病害程度的相关关系,构建基于植被指数、高光谱特征参数的穗颈瘟病害程度随机森林预测模型,并对比分析两个单时期预测模型异同,优选共用输入量,构建出两时期混合数据的病害程度预测模型。结果表明:(1)原始光谱曲线经去包络线处理可有效增强与病害程度相关的光谱信息,近红外波段(960~1 050和1 150~1 280 nm)的相关系数在0.80以上;(2)高光谱特征参数与病害程度相关性分析中,去包络线吸收谷参数相关系数高于其他参数,吸收谷V3(910~1 100 nm)、吸收谷V4(1 100~1 300 nm)中面积(A3A4)、深度(DP3DP4)、斜率(SL4SR4)的相关系数在0.74以上;(3)去包络线吸收谷参数结合随机森林模型预测穗颈瘟病害程度在单时期及两时期混合数据中均表现最好。灌浆期后期数据预测效果最佳,验证集决定系数R2=0.91,均方根误差RMSE=0.02;(4)两时期混合数据预测精度处于两个单时期预测精度之间,验证集决定系数R2=0.85、均方根误差RMSE=0.03。研究成果揭示了灌浆期不同时间段水稻穗颈瘟光谱响应机制,表明去包络线吸收谷参数结合随机森林模型预测稻瘟病的实用性,可为田间水稻穗颈瘟病害程度进行快速、精确、无损地定量预测,为精准施药提供理论依据,并对未来航空、航天遥感的病害监测提供一定的技术支持。  相似文献   
5.
大豆在生长过程中因病害影响其产量会急剧下降,如果不及时判别出病害种类,喷洒相关农药,病害严重的大豆甚至会绝产。及时判别病害种类进行合理施药,阻止病害进一步发展是保证大豆安全生产的重要环节。目前,基于大豆植株细菌性病害的病原菌鉴定和聚合酶链式反应(polymerase chain reaction,PCR)的鉴定方法,最短需要两天时间,因此,快速检测大豆病害种类的方法成为该作物,也是建立智慧农业生产的关键环节之一。应用拉曼光谱快速检测技术诊断大豆病害,构建N-乙酰胞壁酸分子空间结构,采用密度泛函理论通过利用B3LYP/6-31+(d, p)基组优化大豆细菌性病害标志物N-乙酰胞壁酸的分子结构计算其拉曼光谱,并进行理论因子校正,校正因子为0.985 7;采用微区三级拉曼光谱技术探测该标志物N-乙酰胞壁酸的拉曼光谱,采用平滑、去基线、截取波数范围等过程进行光谱预处理;在理论和实验对比分析的基础上,指认大豆测试和计算的拉曼光谱对应的特征峰,峰值波数相差大多在0~10 cm-1,实验数据与理论计算结果基本一致,判定了振动拉曼光谱的特征峰及其对应的分子结构的关系。结果表明:大豆细菌性病害标志物N-乙酰胞壁酸分子在200~1 650 cm-1范围内含15个特征峰,较强峰值和振动归属分别为229.0 cm-1的甲基摇摆振动和764.0 cm-1环内的摇摆呼吸振动等,给出了键长、键角和二面角等15个振动峰的空间结构参数,指证了N-乙酰胞壁酸分子的特征结构。结果也证明了可通过多种生物分子的大豆拉曼光谱测量,筛选细菌性病害标志物N-乙酰胞壁酸分子的拉曼光谱,能够有效识别细菌性病害。智慧农业生产中利用拉曼光谱快速检测技术,是农作物病害检测诊断的一种有效方法,若结合应用机器学习方法与光谱分析识别,以快速、准确和便捷的方式为智慧农业的健康生产及保驾护航发挥效用,是推进我国农业发展的重要环节。  相似文献   
6.
基于光谱角度匹配方法提取黑土边界   总被引:2,自引:0,他引:2  
在RS与GIS环境下,用土地利用、土壤图等获取遥感监督分类的感兴趣区,基于MODIS反射率产品、运用光谱角度匹配等方法进行黑土边界提取研究.结果表明:基于MODIS反射率数据的土壤遥感分类方法,可以提取黑龙江省黑土边界,光谱角度匹配方法分类结果最好,黑龙江省黑土带北部分类精度高于南部;由于植被覆盖、光谱特征相似等原因,其他土壤分类结果相对较差;由于东北地区裸土时间相对较长,MODIS的高时间分辨率特性有利于提高土壤遥感分类精度;在GIS的支持下,充分利用辅助信息选择遥感分类的感兴趣区,可以提高土壤遥感分类精度;引入地形、气候等信息,分类精度得到显著提高、提取的黑土边界信息更准确.  相似文献   
7.
黑土反射光谱特征影响因素分析   总被引:4,自引:0,他引:4  
以黑土高光谱反射率为研究对象,运用去包络线处理、光谱角度/特征匹配方法,分析黑土反射光谱特征主要影响因素.结果表明,成土母质决定了土壤反射光谱的基本特征;有机质是小于1 000 nm范围黑土反射光谱特征的决定因素,同时由于有机质与土壤水分、机械组成的相关关系,间接影响着大于1 000nm的波谱范围;土壤光谱反射率随含水量的变化过程可以用三次方程模型进行定量描述;铁对黑土反射光谱特性影响较小;粗糙度主要影响土壤反射率的大小;秸秆覆盖对土壤反射率大小与形状特征的影响均较大;不同耕作措施土壤反射率大小依次为免耕、翻耕、组合、少耕、旋松.  相似文献   
8.
反射光谱特征的土壤分类模型   总被引:2,自引:0,他引:2  
土壤反射光谱综合反映了土壤的理化性质和内部结构,高光谱遥感已被用于基于土壤反射光谱特性的土壤分类。已有研究一般利用土壤反射光谱一阶微分主成分作为输入量进行光谱分类模型构建,但主成分数据缺乏物理意义,且缺乏对比性、适用范围也有限。与反射率一阶微分数据相比,基于去包络线提取具有明确物理意义的特征参数,能够提高土壤分类的精度,并寻找到一种高精度土壤分类模型。选取吉林省农安县的四种典型土壤(风砂土、草甸土、黑土、黑钙土),将采集后的土壤样本进行风干、研磨、过2 mm筛处理,采用ASD FiledSpec®3便携式光谱仪对处理后的土壤样本的可见光近红外光谱区进行测试,从而获得土壤样本的光谱数据。对光谱数据进行九点平滑、10 nm重采样处理进行降噪,将处理后的数据分别进行一阶微分主成分以及去包络线处理。利用土壤样本的去包络线提取光谱特征参数。以一阶微分主成分数据和光谱特征参数为输入量分别代入Logistic聚类模型(LR)、人工神经网络聚类模型(ANN)、K-均值聚类模型(K-means)。首先明确了不同土类之间的反射光谱曲线、去包络线的差异大小,以及相同土壤的反射率曲线、去包络线进行土壤分类的优劣,并且在去包络线的基础上提取能够区分不同土类的光谱特征参数;其次,比较一阶微分主成分与光谱特征参数作为输入量时,三种光谱分类模型精度差异并分析不同模型精度差异的原因。结果表明:(1)四种土壤的反射光谱曲线差异较小,去包络线可以极大的增强四种土壤在430~1 210 nm之间的光谱差异,并在去包络线的基础上构建具有明确物理意义的光谱特征参数。(2)将一阶微分主成分和光谱特征参数分别代入三种聚类模型可知,以光谱特征参数为输入量的土壤光谱分类模型均超过了以一阶微分主成分为输入量的模型精度,由于光谱特征参数保留了原数据的物理意义、更准确的体现了不同土壤类型之间的差异性,而一阶微分主成分数据带有一定的模糊性不同范围之间缺乏对比性,在土壤分类中以光谱特征参数作为输入量更具有优势。(3)在三类土壤分类模型中,LR的分类精度最高为76.67%,Kappa系数为0.56;ANN的分类精度中等为72.50%,Kappa系数为0.48;K-means的分类精度最低,只有65.00%,Kappa系数为0.33。研究成果可为土壤精细制图、以及土壤分类仪器的研制提供技术支持。  相似文献   
9.
基于反射光谱特性的土壤分类研究   总被引:11,自引:2,他引:9  
选取中国松嫩平原吉林省农安县主要土壤(黑土、黑钙土、草甸土、风砂土、冲积土)室内光谱反射率作为研究对象,利用去包络线方法提取反射光谱特征指标,作为输入变量建立BP神经网络模型,进行土壤分类研究,探索利用表层土壤反射光谱特性进行土壤分类的可行性。结果表明:(1)包络线去除后的曲线使土壤可见光近红外波段的吸收特征显著增强;农安县不同土壤在400~2500nm范围内主要有5个光谱吸收谷,前2个吸收谷主要是由于土壤有机质、铁及土壤机械组成引起的,后3个是土壤水分吸收光谱能量引起的;不同土壤类型反射光谱的差异主要表现在前2个吸收谷。(2)由于输入变量的选取客观准确,基于前2个吸收谷形状特征的BP神经网络模型的土壤分类精度显著优于以反射率或5个吸收谷形状特征为输入变量的模型,可以用于土壤分类。  相似文献   
10.
基于反射率模拟模型的黑土有机质含量估测   总被引:8,自引:0,他引:8  
定量分析了黑龙江省黑土室内高光谱反射率曲线特征,确定了影响反射光谱曲线的主要特征控制点,建立了黑土光谱反射率模拟模型并对其进行评价,分析比较反射率数据、模拟后的光谱数据与土壤有机质含量的关系,建立了土壤有机质含量光谱预测模型。结果如下:有机质是小于1000 nm范围黑土反射光谱特征的决定因素,随有机质含量变化,黑土光谱反射率在该范围呈现单/双吸收谷特征;黑土反射光谱曲线在450~930 nm范围内有5个主要特征控制点;黑土反射率模拟模型能较准确地描述黑土反射光谱曲线,直线模型的模拟效果更好;以反射率模拟模型系数为自变量的有机质含量预测模型优于基于反射率及其一阶微分的模型,说明反射率模拟模型的曲线控制点选择合理且有代表性,反射率曲线模拟方法能够准确描述黑土的实际光谱反射率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号